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Abstract: We propose a deep learning framework to solve the inverse design problem
of one-dimensional photonic crystal nanobeam cavity structure. After training, we obtained
an effective solution to the inverse design. © 2019 The Author(s)
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1. Introduction
In nanophotonic, inverse design from given optical responses to geometric structure is a challenging problem,
since it needs complicated calculation [1]. The traditional way to solve the inverse problem can be summarized
into two categories [2]. The first is genetic algorithm. The electromagnetic response is used to iterate parameters
which is initialized randomly and match desired spectrum continually. On running genetic algorithm, we spent
more computing resources and time to ensure the structural requirements. The second is the adjoint method.
We established an inverse mathematical model by solving adjoint equations to get desired parameters. Adjoint
equations may have no analytical solution though the adjoint method seems to be more efficient than the genetic
algorithm. However, the iteration and optimization process of these methods are time-consuming and prohibitively
slow, due to the high non-linearity of the inverse design.

As structure size and complexity grow, traditional numerical optimization methods becomes complicated and
impossible. Data-driven methods based on deep learning which can uncover unknown relations among a huge
number of variables emerges [2–4]. With a well-trained deep neural network (DNN), a possible structure cor-
responding to a given spectrum can be computed rapidly, which outperforms complicated traditional numerical
optimization methods. For example, Peurifoy et al. combined deep learning with nanophotonics to predict the
shell-shaped nanophotonics [2]. Liu et al. applied neural network to predict thin-film nanostructures successful-
ly [3]. Ma et al. used CNNs to predict the structure of chiral metamaterials [4].

In recent, ultra-high Q-factor (Q) and ultra-low mode volume (Vm) one-dimensional photonic crystal nanobeam
cavities (1-D PCNC) have emerged as an advantageous platform for on-chip nanophotonics, including quantum
optics, integrated nanophotonics and optical tweezer [5, 6]. In this paper, a DNN is proposed to solve the inverse
design problem of 1-D PCNC and verify its accuracy by comparing with electromagnetic simulations. We focus
on 1-D PCNC whose thickness is ignored, as shown in Fig.1. Ten circular micro-cavities are arranged laterally and
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Fig. 1. The structure of 1-D PCNC.

symmetrically in a two-dimensional space. Denote the center distance between adjacent cavities as period a, the
radius of central cavity as Rc and the radius of edge cavity as Re. Then an 1-D PCNC structure could be completely
determined by a, Rc and Re. The laser goes into the cavity horizontally from one side. The transmission spectrum
which is called the fundamental mode(FM) is different according to different structural parameters. The shape of
FM is shown in Fig.2(a).
2. Results and Discussion

A DNN as shown in Fig.2(b) is trained to study the hidden relationship between the structures and spectrums of 1-
D PCNC. With desired spectrum entered into input layer and passed through three hidden layers, the intermediate
layer outputs the predicted structure parameters, which is entered into another three hidden layers, and the last
layer outputs the predicted spectrum finally. The loss function L consists of two parts, being written as eq.(1):

L = Lstruct +Lspect (1)
Lstruct denotes the MSE between desired structure and predicted structure. Lspect denotes the MSE between the
desired spectrum and the predicted spectrum. Our end-to-end network is different from others without stacking
training, which improves training efficiency significantly.
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Fig. 2. (a) The FM of 1-D PCNC. (b) Construction of deep learning model.

For a given desired spectrum, we compare the structure predicted by DNN and computed by simulation. As
shown in Fig.3(a), the three structure parameters obtained from two methods are nearly the same. Further, we
compare the corresponding spectrums as shown in Fig.3(b). The resonance peak calculated from system spectrum
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Fig. 3. (a) The retrieval parameters of 1-D PCNC. (b) The transmission spectrum of 1-D PCNC(FM).

by the predicted structure is consistent with that calculated from simulation spectrum. The error of resonance peak
between DNN method and simulation is less than 3nm. The error of resonance peak between DNN method and
desired spectrum is less than 5nm. The results verify that the proposed DNN method is able to complete inverse
design with an acceptable margin of error. However, compared to time-consuming methods, DNN method can
accomplish the design goal in a fraction of second.

In this work, we propose a DNN and demonstrate its powerful ability of predicting 1-D PCNC parameters. By
the means of this special network, we solve the inverse design problem of 1-D PCNC that is difficult for traditional
methods. Our innovative research makes sense of the application for other nanophotonic structures. By the same
token, our further researches will concentrate on improving our network architecture for the inverse design of
nanophotonic structures to get better accuracy.
Acknowledgements
Here, this research was supported by NSFC (61501053), the Fundamental Research for Central Universities
(2018XKJC05) BUPT, P. R. China.
References

1. I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski, ”Plasmonic nanostructure design and
characterization via Deep Learning.” Light:Science&Applications.7:60(2018).

2. J. Peuriifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. Delacy, J. D. Joannopoulos, M. Tegmark, M.
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