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Abstract: The ability to detect nanoscale objects is particular crucial for a wide range of applications,
such as environmental protection, early-stage disease diagnosis and drug discovery. Photonic crystal
nanobeam cavity (PCNC) sensors have attracted great attention due to high-quality factors and
small-mode volumes (Q/V) and good on-chip integrability with optical waveguides/circuits. In this
review, we focus on nanoscale optical sensing based on PCNC sensors, including ultrahigh figure of
merit (FOM) sensing, single nanoparticle trapping, label-free molecule detection and an integrated
sensor array for multiplexed sensing. We believe that the PCNC sensors featuring ultracompact
footprint, high monolithic integration capability, fast response and ultrahigh sensitivity sensing ability,
etc., will provide a promising platform for further developing lab-on-a-chip devices for biosensing
and other functionalities.

Keywords: photonic crystal nanobeam cavity; optical sensor; sensing mechanisms; refractive index
sensing; nanoparticle detection; biomolecule detection; multiplexed sensing

1. Introduction

Ultra-sensitive and rapid detection of nanoscale analytes plays an important part in numerous
fields, such as homeland security, environmental protection, early stage disease diagnosis and drug
discovery [1–3]. For example, the detection of nanoparticles in air is important for human health,
because the ultra-fine particles can destroy lungs, leading to lung disease. Moreover, they also have
the ability to penetrate membrane cells and diffuse along the synapses, blood vessels and lymphatic
vessels of nerve cells resulting in serious illness [4–10]. The monitoring of fatal infectious bacteria
and viruses is necessary for early-stage disease control, including severe acute respiratory syndrome
(SARS) and acquired immune deficiency syndrome (AIDS) [11,12].

Enabled by the rapid development of nanofabrication technology, methods such as fluorescent
labelling and enzyme-linked immunosorbent assays (ELISA) have been developed for detecting
nanoscale objects and the detection abilities is down to single nanoparticle level. However, labeling
the target analytes always needs complicated processes and might affect their chemical structures.
Label-free optical sensors exhibit distinguished potential for the detection of nanoscale analytes
(physical, chemical, and biological) owing to their good performance in non-invasiveness, fast response,
real time in situ detection capability and immunity to electromagnetic interference. In recent years,
various optical sensors have been developed for sensing applications, including mach-zehnder
interferometers (MZI) [13,14], surface plasmon resonators (SPR) [15,16], fiber Bragg gratings (FBG) [17],
and optical microcavities [18,19]. Among these, optical microcavities are considered to be excellent
platforms for optical sensing due to the high-quality factors (Q) and small-mode volumes (V). The optical
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microcavities confine the light in a small volume, leading to significant enhancement of light–matter
interaction, resulting in ultra-high sensitivity (S) and a low detection limit. When subject to slight
environmental changes, the spectral properties change can be obtained, e.g., resonator wavelength
shift [20–22] and mode broadening [23].

The main types of optical microcavities include whispering gallery mode (WGM) cavities, Fabry–
Perot (F–P) cavities and photonic crystal (PhC) cavities [24]. Among these, PhC cavities have been
investigated as advantageous platforms due to their ultra-high Q/V enabling the enhancement of light–
matter interactions. Particularly, compared with two-dimensional (2D) PhC cavities, one-dimensional
photonic crystal nanobeam cavities (1D-PCNCs) attract great attention for their ultra-sensitive optical
sensing and lab-on-a-chip applications, owing to their ultra-compact size, ultra-small mode volume,
high integrability with bus-waveguide and excellent complementary metal-oxide-semiconductor
(CMOS) compatible properties [25–33].

In this review, we will focus on nanoscale optical sensing based on 1D-PCNCs. The structure of
the review is organized as follows. A comprehensive overview about basic properties and sensing
mechanisms of 1D-PCNCs sensors is discussed in Section 2. In Section 3, firstly, we introduce the
efforts to pursue ultra-high figure of merit (FOM) in refractive index (RI) sensing based on 1D-PCNCs.
Secondly, we outline the applications of 1D-PCNC sensors on single nanoparticle and label-free
molecule (viruses, proteins and DNAs) detection. Thirdly, a monolithic integrated 1D-PCNC sensor
array for multiplexed sensing is introduced explicitly. In addition, we present other sensing applications
of 1D-PCNC sensors such as temperature sensing and optomechanical sensing, etc. Next, we review
the nanofabrication and coupling techniques in the development of 1D-PCNC sensors in Section 4.
Finally, we draw a brief conclusion.

2. Sensing Mechanisms of Photonic Crystal Nanobeam Cavities (PCNC) Sensors

The resonance characteristics, such as resonant wavelength (λ) and linewidth (δλ), could be
notably influenced by tiny physical, biological and chemical changes in the optical mode region.
With recent advances in research on PhC cavities both theoretically and experimentally [34–38], PCNCs
have been extensively applied for optical sensing. PCNC sensors are advantageous for optical sensing
because of their ultra-high Q/V. Firstly, Q can be expressed as the ratio of the cavity central resonance
wavelength to its linewidth, namely, Q = λ0/δλ =ωτ, whereω is the angular frequency and τ is the
cavity photon life time. The longer the photon life time, the stronger the interaction between light and
matter will be. Higher Q exhibits narrower resonance linewidth (δλ), and determines the minimum
resonance shift (∆λ) detectable by the system. Next, V describes the light confinement ability. A small
V implies that the mode field is highly localized, which can significantly enhance the light–matter
interactions. The high Q and small V enable 1D-PCNC to be an excellent platform for lab-on-a-chip
optical sensing based on the resonance mode shift or mode broadening mechanism [19].

2.1. Mode Shift

The common sensing mechanism based on PCNC is to monitor the resonance wavelength shift
on account of analytes-induced RI variations in the near-field of the PCNC. These variations can
be put down to local perturbations induced by the adsorption of analytes onto the cavity surface
(e.g., adsorption of proteins), or global perturbations in the background RI induced a variation in the
bulk concentration of the analytes (e.g., the different concentrations of sodium chloride solutions).
According to perturbation theory [39], the wavelength shift ∆λ generated by a small index perturbation
∆n of the surrounding analytes can be calculated. Taking into consideration of a homogenous change
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of refractive index, we can assume that the changes of RI is all the same in the perturbed region and
there is no change in the unperturbed region. Finally, the wavelength offset can be approximated as:

∆λ
λ0
≈

∆n
n0

∫
Vanalyte

ε(r)
∣∣∣E(r)∣∣∣2d3r∫

Vtotal
ε(r)

∣∣∣E(r)∣∣∣2d3r
=

∆n
n0

Γanalyte (1)

where Γanalyte describes the filling factor of the electric field energy stored in the surrounding analytes.
Furthermore, when the PCNC is used for nanoparticles or molecular detection, ∆λ of the resonance
can be described as follows [21]:

∆λ
λ0

=
3
(
εp − εs

)
εp + 2εs

|Emol|
2

2
∫
ε|E|2dr

Vmol (2)

where εp is the permittivity of the nanoparticle, εs is the permittivity of the background environment,
Emol is the electric field at the nanoparticle location,

∫
ε|E|2dr is the overall optical mode energy inside

cavity, and Vmol is the nanoparticle volume. From Equations (1) and (2), it is obviously presented that
a smaller cavity V and a stronger light confinement in the perturbed region can lead to a larger ∆λ and
then result in higher sensitivity. Here, the sensitivity is defined as S = ∆λ

∆n . According to Equation (1),
the S of the cavity could be expressed as [39]:

S =
∆λ
∆n
≈
λ0

n0
Γanalyte (3)

indicating that the S relies much on the Γanalyte. High Γanalyte would lead to a high S, because the light
field can fully overlap with the analytes in the low-index region.

Herein, we can define the FOM of PCNC sensors as [40]:

FOM = Q·S/λ0 (4)

where λ0 is the cavity resonant wavelength.

2.2. Mode Broadening

Recently, PCNC sensors based on the dissipative interaction have reduced the detection limit to
single nanoparticle level. In the case of a PCNC with an absorptive material surrounding, the absorption
causes the cavity mode linewidth broadening. There are no requirements for the ultra-high Q and it
is insensitive to external disturbance such as environmental temperature drift and the probe laser in
the cavity mode broadening measurement. Compared with mode shift, a mode broadening sensing
mechanism is determined by the dissipative characteristics of the nanoparticles and is well suitable
for high-Q, low index-contrast polymeric photonic crystal nanobeam cavities to detect lossy analytes.
The total cavity Q can be written as [41]:

1
Qtotal

=
1

Qr
+

1
Qc

+ Γanalyte
1

Qabs
(5)

where 1/Qr, 1/Qc, 1/Qabs represent the radiation loss, the input/output waveguides-induced loss, the
material absorption loss, respectively. To calculate Qabs, the filling factor Γanalyte should be calculated
first (in COMSOL Multiphysics [42]). The Γanalyte and Qabs can be written as [41]:

1
Qabs

= 2Γanalyte
k
n

(6)



Micromachines 2020, 11, 72 4 of 20

where k and n are the imaginary and real parts of the complex RI (
∼
n = n+ ik) of the absorptive material.

For a given PCNC structure, the filling factor Γanalyte relies on the real part of the surrounding analytes.
When detecting the analytes, 1/Qr and 1/ Qc hardly changes, so we can express it as [43]:

∆
[

1
Qtotal

]
= ∆

[
δλ

λ0

]
=

∆[δλ]
λ0
−
δλ · λ

λ2
0

= ∆
[
Γanalyte

2k
n

]
(7)

where λ0 is original resonant wavelength, and δλ is optical mode linewidth. Apparently, the change of
δλ is linearly proportional to the change of k. Therefore, the analytes–sensor interaction is translated
into the change of the k, and then converted into the changes of the ∆[δλ]. Note that the side scattering
caused by the analytes also leads to the resonance energy loss, resulting in the linewidth broadening and
Q drops [44], which have been considered as having huge potential for detecting single nanoparticles,
therefore possibly providing an excellent platform for practical demands in single molecule detections.

3. Sensing Applications of PCNC Sensors

3.1. Efforts on Ultra-High Figure of Merit (FOM) for Refractive Index (RI) Sensing

As introduced in Section 2 above, the FOM of PCNC sensors is expressed as FOM = S·Q/λres [40].
However, FOM is affected by the trade-off between S and Q: in order to obtain high S [45,46], the light
mode requires strong interaction with the analytes (i.e., outside the waveguide medium); in order
to achieve high Q, the light mode should be more confined to the waveguide medium. As a result,
the best geometry to maximize Q and S is being actively developed, which provides excellent platform
for achieving ultra-low detection limit of single nanoparticle and biomolecules detection. Here, Table 1
summarizes a wide range of comparisons between different structures.

For higher Q, the light mode should be more confined to the waveguide medium, Rahman et al.
presented the design modelling and fabrication of silicon-on-insulator (SOI) nanobeam cavities, which was
immerged in a microchannel for RI sensing [47]. Sensitivity of this sensor was more than 200 nm/RIU
(refractive index unit) while Q exceeds 30,000 in air and 20,000 in water. Then, Gong et al. [48] designed
and fabricated 1D-PCNCs using silica. They used trapezoidal cavity designs in Si and Si3N4 [27,36],
but considered silica plates suspended in free space. The simulation showed that Q exceeded 104 with
the mode volume of 2.0 (λ/n)3 at the visible wavelength range (600–716 nm). For example, Yao et al.
reported an optical sensor with an ultra-high sensitivity based on the 1D-PhC stack mode-gap cavity [49].
By introducing the width-tapering structure that was quadratically modulated, a waveguide coupled
1D-PhC stack mode-gap cavity was designed. The measured Q was up to 1.74 × 107 with mode volume
of 1.48 (λ/nSi)3 [49]. The confined mode accounted for most electric field energy, which interacted strongly
with the detection target. The S was as high as 269 nm/RIU.

For a higher sensitivity, the optical resonance field requires to be confined in a small mode volume
and interact strongly with the analytes. The S can be improved by the following methods: designing
the air mode (AM) PCNC to localize the optical field in the air holes (circular [50,51], elliptical [52]);
embedding a nano-slot into the dielectric mode (DM) PCNC and the light can be localized in the
nano-slot [40,53–58]. For example, Wang et al. presented InGaAsP PhC slot nanobeam slow optical
waveguides, which embedded InAs quantum dots [53]. The 900 nm/RIU measurement record of S fully
confirms that the electric field can be strongly localized in the slot region. In 2017, Liu et al. proposed a
suspended ultra-sensitive silicon nitride (Si3N4) PCNC sensor [59]. Si3N4 has been considered as an
alternative material for SOI platforms because of low-cost, CMOS compatible properties and relatively
low RI (n ~ 2). Furthermore, the loss of Si3N4 waveguides based on plasma-enhanced chemical
vapor deposition (PECVD) thin films at the visible wavelength band was less than 1 dB/cm [60].
All outstanding advantages introduced above enable Si3N4 to be a reliable choice for visible sensing
applications. The S of 321 nm/RIU was also obtained at the wavelength of ~700 nm with higher order
mode. Moreover, the slotted geometry was exploited to provide strong light confinement and enhanced
localized field, which resulted in an ultra-small mode volume. Thus, the performance advantages of
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ultra-high sensitivity, ultra-high Q factor, and ultra-small mode volume enabled the proposed single
1-D PhC-SNCs to be promising candidates for lab-on-chip sensing arrays.

Table 1. Q, V, S and FOM (figure of merit) compared with different structure.

Classification Structure Quality
Factor (Q)

Mode
Volume (V)

Sensitivity
(nm/RIU) FOM Ref

High-Q
(Q > 104)

Low-S
(S < 300)
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Much research has been proposed to optimize structure design to obtain high Q and high S
simultaneously with PCNC RI sensors. For example, Quan et al. presented the design of high Q
polymeric PCNCs in 2011, which consisted of two polymers with the refractive index contrast of
1.15 [61]. Furthermore, at a 100 microwatt power level, thermo-optical bistability could be observed.
The nanobeam cavity included a ridge waveguide, and the ridge waveguide was perforated with
elliptical holes grating. At the same time, the cavities immersed in D2O was measured, and the
absorption of the cavity in the range of telecommunication frequency was negligible. The highest Q
factor obtained in D2O was 36,000. A lower ratio of the system (index ratio = 1.15) was achieved while
the Q was almost one order of magnitude higher than that formerly proved (Q = 5000 in air and index
ratio = 1.46) [36]. They also demonstrated that the FOM of these devices was two orders of magnitude
higher than sensors based on SPR, and better than the commercial BiacoreTM sensors. The evanescent
field of the polymer nanobeam cavity can be extended to the surrounding medium, which is more
than the widely applied silicon-based nanophotonic sensors because of the low RI contrast. Therefore,
the wavelength shift of the polymer cavity was more sensitive to the variations of the volume RI
in the ambient medium. By combining functional nanostructures with new materials, we hope to
inspire new applications such as non-linear optics, light-emitting diodes (LEDs), and photoluminescent
devices. Moreover, Yang et al. demonstrated a 1D-PhC single nanobeam cavity based on air mode
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in 2015 [50]. For the AM, the optical resonance field was strongly confined in the air area and
overlapped with the analytes, enhancing the interaction between light and matter. Consequently, a
high Q of 5.16 × 106 and S of 537.8 nm/RIU were achieved at wavelength of 1350 nm. In most sensing
applications where water was used as carrier liquid, the Q of sensor has been limited to about 104 due
to the absorption of water at the telecommunication wavelength, resulting in a FOM of about 4000.
Therefore, the 1D-PhC single nanobeam AM cavity sensor was considered a promising platform for RI
sensing. In addition, a nano-slotted parallel multibeam cavity was proposed by Yang et al. in 2013.
When absorption was ignored, they obtained S > 800 nm/RIU and Q > 107 in liquid in the range of
telecommunication wavelength [62]. Then, Kim et al. demonstrated a high Q and S optical sensor based
on PCNC with the second lowest air band edge mode, achieving S of ~631 nm/RIU and Q > 23,300
and theoretical FOM was more than 9500 [63]. In order to achieve ultra-high Q and S simultaneously,
Yang et al. proposed two different designs (AM, DM) of ultra-compact photonic crystal nanofiber
cavities (PCNFCs) in 2018. By numerical simulation, the Q and S of Q ~ 1.1 × 107, S = 563.6 nm/RIU
and Q ~ 2.1 × 105, S = 736.8 nm/RIU were obtained, and the FOM was up to 4.31 × 106 and 1.13 × 105,
respectively [64]. Compared with the previous works of PCNFCs, Q/V was more than two orders of
magnitude. In addition, the index contrast of proposed device in this work was reduced more two
times than previous research works. In 2017, Sun et al. proposed a single PhC slot nanobeam cavity
with rectangular-shaped air holes, which achieved S of 835 nm/RIU and Q of 5.50 × 105 with mode
volume down to 0.03 (λ/nair)3, and an ultra-high FOM with 2.92 × 105 was obtained [65]. Obviously,
the light was mainly confined in the slotted region which indicated analytes can be strongly interacted
with light. Xu et al. designed high Q slotted 1D-PhC cavities with parabolic-width stack in 2013,
achieving Q of 3.73 × 106 with small mode volume of 0.217 (λ/nc)3 at λ = 1546.5 nm [66]. Both a high
S of 437 nm/RIU and FOM of 1.5 × 106 was obtained. Later, Yang et al. designed a single 1D-PhC
slot nanobeam cavity modulated by parabolic radius in 2015, which was achieved by introducing a
nanoslot in the middle of a 1D-PCNC and was composed of air-holes (nair = 1.0) with reduced radii and
etched into a silicon (nsi = 3.46) ridge waveguide. A high Q of about 4.10 × 103 and a transmission of
nearly 70% can be acquired from the simulation. The fundamental mode wavelength was 1529.92 nm.
In addition, they demonstrated that both an ultra-high S of 750.89 nm/RIU and Q of 2.67 × 107 in air can
be obtained simultaneously, resulting in FOM > 107 [67]. The results demonstrated that the proposed
sensor is potentially an ideal platform for on-chip sensing owing to high sensitivity, small footprints
and masses.

In addition, PCNCs with ultra-high sensitivity, quality factor and ultra-small mode volume opens
up the possibility to push the detection limit down to single nanoparticle level [44]. Furthermore,
the sensitivity and detection limit can be enhanced by introducing SPR into PCNCs in the future,
which has been employed in WGM cavities [68]

3.2. Single Nanoparticle Trapping and Detection

Detection of a single nanoparticle is of enormous importance in early-stage disease diagnosis,
explosive materials detection and semiconductor manufacturing. Optical sensors such as nano-waveguide
sensors [69–72], WGM microcavity sensors [73], and PhC microcavity sensors [74,75] have attracted
great attention due to high S, low cost and small size, which has been successfully used for single
nanoparticle detection. Moreover, the sensitivity and detection limit are the major factors to characterize
the performance of optical sensors. Compared with nano-waveguide sensors, optical microcavities can
confine light in a small mode volume, which results in the strong light–environment interactions and
then leads to ultra-high sensitivity as well as the low detection limit. Among these, PhC cavities have
potentially higher sensitivities than WGM cavities due to their small cavity volume [44]. Therefore,
the detection limit is comparable to WGM cavities although the Q of PhC cavities is not as high as
WGM microcavity sensors. In addition, the CMOS compatible property of PhC cavities opens up the
possibility of integrate PhC devices for sensing. In the recent years, efforts on pursuing ultra-low
detection limit and high sensitivity have been carried both in air and aqueous environment by designing
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different structures and different methods of nanoparticle capture. Some examples are summarized
in Table 2, providing an overview about the ability of single nanoparticle detection using PCNCs.
For instance, Lin et al. trapped and detected particles with diameter of 110 nm using optical forces in the
year of 2012, which avoided the diffusion bottleneck and enhanced the reusability [76]. In 2014, Lin et al.
proposed a PhC waveguide cavity with a waist structure for a 50 nm radius nanoparticle trapped on the
lateral side of the waist and the device presented advantages of ultra-compact, efficient and versatile,
contributing to the development of lab-on-chip sensing [77]. Lin, et al. proposed a surface-enhanced
Raman scattering platform based on PCNC, achieving the detection of an Ag nanoparticle with radius
down to 40 nm in 2013 [74]. The nanoparticle can be released and trapped by turning the laser off and
on, which shows an excellent reusability and reconfigurability. Another structure was demonstrated
with a slot between two neighboring holes to confine light by Wang et al. in 2015, detecting single
polystyrene (PS) nanoparticles with radii of 20nm and 30nm in aqueous environment [58]. In the year
of 2013, Quan et al. fabricated PCNC in the SOI platform with Q of 1.2 × 105, 8.3 × 104, 3.5 × 104 in air,
D2O, H2O and detected polystyrene nanoparticle with the lowest radius of 12.5 nm in DI water [21].
Yang et al. theoretically showed that a PS nanoparticle as small as 10 nm in radius can be trapped
and detected in 2018 [78]. A 1D-PhC microcavity biosensor with Q of 190 was presented by Schmidt
et al. in 2004, achieving the detection of gold particles 10 nm in diameter, showing the ability of
biomolecules detection, such as DNA, RNA, proteins and antigens [79]. Smaller nanoparticle with radii
of 1 nm were detected theoretically by Lin et al. in the year of 2015 [55]. In the same year, Liang et al.
experimentally demonstrated the first air-mode PCNCs at telecom wavelength with high Q of 2.5 × 105,
low-mode volume of 0.01 (λ/nair)3. In this configuration, nanoparticles deposited by electrospray and
smaller single gold nanoparticles with diameter of 25 nm, 15 nm, 5 nm and 1.8 nm were detected
based on mode shift and mode broadening simultaneously [44]. The combination between PCNC
and piezospray or electrospray provided a research method to characterize limited nanoparticle size
frequently and rapidly.

Table 2. Examples for single nanoparticle detection based on photonic crystal nanobeam cavity (PCNC).

Structure Q Radius Ref
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3.3. Biomolecules Detection

Biosensing plays a significant part in disease diagnosis, such as the detection of different molecules
in a blood sample, which is always based on an antibody–antigen locking mechanism. Hence, researches
have been put forward to optimize PCNCs design in order to obtain high FOM and ultra-low detection
limit for biomolecules detection. Several research projects have been carried out for biosening by
integrating microfluidic with PCNCs. For example, by embedding PCNCs inside a microfluidic channel
and functionalized with biotin, as shown in Figure 1a, single streptavidin molecule with a concentration
of 2 pM was detected, as shown in Figure 1b [21]. This device provided a platform for ultra-sensitive
and label-free biomolecules detection. Tardif et al. finished the identification of three different kinds of
bacteria using 1D-PhC, which provided a reference for the investigation of larger numbers of bacteria
with different shapes, sizes and properties, as shown in Figure 1c,d [80]. Based on PCNCs, Liang et al
proposed PhC chips with Q of 14,000 for label-free protein detection and detected carcinoembryonic
antigen (CEA) biomarker from 0.1 pg/mL to 10µg/mL [81], as shown in Figure 2a,b. In addition, the device
can be mass-produced with scalable deep-ultraviolet (UV) lithography, enabling biological sensor chips
to be practical and commercial. To obtain high Q and high S simultaneously, Yang et al. proposed
nanoslotted parallel quadrabeam PhC cavity (NPQC) with high FOM > 2000, as shown in Figure 2c and
experimentally observed streptavidin-biotin binding events via mode shift, achieving the detection of
streptavidin molecule with concentration down to 10 ag/mL, as shown in Figure 2d [54]. Later, in the
year of 2017, Liang et al. designed a hybrid photonic-plasmonic antenna-in-a-nanocavity biosensor,
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as demonstrated in Figure 3a [82]. Furthermore, they have successfully achieved the label-free detection
of DNA-protein dynamics with an ultra-high Q/V, as shown in Figure 3b. The research demonstrated the
limitation of traditional fluorescent labeling methods and provide an attractive option for single-molecule
drug discovery. Rodriguez et al. demonstrated a PCNC by utilizing a porous silicon with large internal
surface area, which allowed enhanced molecular capture and direct light–matter interaction in 2019 [83],
as shown in Figure 3c. In this work, the surface detection S was approximately 1.6 pm/nM for 16-base
nucleic acid molecules, as depicted in Figure 3d.
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Figure 1. (a) The proposed the sensor chip, including nanobeam cavities, waveguides and PDMS
(polydimethylsiloxane) channel. (b) Real-time response of 2 pM streptavidin phosphate buffered saline
(PBS). (a,b) Reproduced with permission [21]. Copyright 2013, Optical Society of America. (c) Schematic
of fluidic system. The blue represents E. coli and the orange is S. epidermidis. (d) Redshift observed in
the photonic crystal nanobeam cavity (PCNC) in the presence of three molecules. (c,d) Reproduced with
permission [80]. Copyright 2016, Author(s).Micromachines 2019, 10, x FOR PEER REVIEW 10 of 20 

 

 
Figure 2. (a) Schematic of photonic circuits. The green lines, red boxes and black boxes represent 
waveguides, PCNCs and grating couplers, respectively. (b) Resonance shift measured in real time 
with different concentration of carcinoembryonic antigen (CEA). Reproduced with permission [81]. 
Copyright 2013, Optical Society of America. (c) Scanning electron microscope (SEM) image of 
proposed nanoslotted parallel quadrabeam PhC cavity (NPQC). (d) Real-time resonance shift 
monitored with streptavidin/biotin binding event. (c–d) Reproduced with permission [54]. 
Copyright 2014, AIP Publishing LLC. 

 
Figure 3. (a) SEM image of the silicon photonic chip consists of PCNCs (zoomed SEM inset), 
waveguides for the connection of nanobeam cavities to the edge for input/output coupling. (b) 
Binding dynamics of the mismatched and normal between dsDNA and xeroderma pigmentosum 
gene-enconded protein (XPA). (a,b) Reproduced with permission [82]. Copyright 2017, The authors. 
(c) SEM image of PCNCs patterned on porous silicon. (d) Transmission spectra of porous silicon 
PCNC, achieving the detection of five biomolecules. (c,d) Reproduced with permission [83]. 
Copyright 2019, Optical Society of America. 

In summary, for both the detection of single nanoparticles and biomolecules introduced above, 
the adsorption of single nanoparticles and biomolecules onto the PCNCs is monitored via the 
resonance wavelength shift and linewidth broadening. Many methods have been proposed to 

Figure 2. (a) Schematic of photonic circuits. The green lines, red boxes and black boxes represent
waveguides, PCNCs and grating couplers, respectively. (b) Resonance shift measured in real time with
different concentration of carcinoembryonic antigen (CEA). Reproduced with permission [81]. Copyright
2013, Optical Society of America. (c) Scanning electron microscope (SEM) image of proposed nanoslotted
parallel quadrabeam PhC cavity (NPQC). (d) Real-time resonance shift monitored with streptavidin/biotin
binding event. (c,d) Reproduced with permission [54]. Copyright 2014, AIP Publishing LLC.
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Figure 3. (a) SEM image of the silicon photonic chip consists of PCNCs (zoomed SEM inset), waveguides
for the connection of nanobeam cavities to the edge for input/output coupling. (b) Binding dynamics of
the mismatched and normal between dsDNA and xeroderma pigmentosum gene-enconded protein
(XPA). (a,b) Reproduced with permission [82]. Copyright 2017, The authors. (c) SEM image of PCNCs
patterned on porous silicon. (d) Transmission spectra of porous silicon PCNC, achieving the detection of
five biomolecules. (c,d) Reproduced with permission [83]. Copyright 2019, Optical Society of America.

In summary, for both the detection of single nanoparticles and biomolecules introduced above,
the adsorption of single nanoparticles and biomolecules onto the PCNCs is monitored via the resonance
wavelength shift and linewidth broadening. Many methods have been proposed to pursue high
FOM and low detection limit, such as studying the functionalized materials to reduce absorption loss,
making the functionalization process easy to operate, and improving persistence and optimizing the
structure of nanobeam cavities.

3.4. Monothlic Integrated Sensor Array for Multiplexed Sensing

With the rapid development of micro-nano integrated devices, higher requirements are placed
on miniaturization, functional diversification and high integration. Therefore, there is much research
work focused on multiplexed sensors including nanobeam cavities array and single nanobeam cavity,
which have realized the detection of various analytes.

Mandal et al. proposed a nanoscale multi-channel optofluidic sensor array based on PCNCs,
achieving the label free detection of biomolecules in an aqueous environment in 2008 [84]. In this work,
PCNCs side coupled to input/output waveguides, and each nanobeam cavity and waveguide was
separated in different fluid channels, as shown in Figure 4a. To illustrate the nanoscale optofluidic
sensor array, the authors fabricated fluidic architecture by a soft lithography technique with a flexible
polymer PDMS, which successfully achieved the detection of water and CaCl2 solution with a RI
resolution of 7 × 10−5 and the detection limit of 35 ag. Later, they demonstrated the multiplexed
ability of the structure introduced above via the separate and simultaneous detection of three kinds of
interleukins in 2009 [85], as shown in Figure 4b. Moreover, Yang et al. demonstrated a 3-parallel-channel
integrated sensor array with footprint of 4.5 µm × 50 µm (width × length) in 2016 and the S of each
channel is 112.6 nm/RIU, 121.7 nm/RIU, 148.5 nm/RIU [86], shown in Figure 4c,d. These ultra-compact
devices have been considered as promising platform for further lab-on-chip applications with high
integration and ultra-sensitive multiplexed sensing abilities. Except for a nanobeam sensors array,
a single nanobeam cavity also can be used for multiplexed sensing. For example, another cascaded
side coupled structure for multiplexed sensing has been proposed by Liu et al. [87], as shown in
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Figure 4e. There two PCNCs for different sensing, one is air-mode cavity for RI sensing and another
is dielectric-mode cavity for temperature sensing. Moreover, experiments have been carried out for
the RI sensing and temperature sensing in glucose solution, obtaining the highest RI sensitivity of
254.6 nm/RIU for air-mode cavity and temperature sensitivity of 56.4 pm/◦C for dielectric-mode cavity,
as shown in Figure 4f. This structure shows the excellent capabilities in multiparametric sensing
applications due to the simple configuration, easy fabrication and convenient integration.
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Figure 4. (a) SEM of a nanoscale optofluidic sensor array (NOSA). Reproduced with permission [84].
Copyright 2008, Optical Society of America. (b) Transmission spectra of resonators, achieving the
detection of five molecules. Reproduced with permission [85]. Copyright 2009, The Royal Society of
Chemistry. (c) Schematic of the proposed 3-channel parallel integrated sensor. (d) Transmission spectra
monitored with three parallel sensing channels. The refractive index S1 and S2 change independently
while S3 is not. (c,d) Reproduced with permission [86]. Copyright 2016, Optical Society of America.
(e) Schematic of the proposed cascaded side-coupled PCNCs. (f) Normalized transmission spectra
of cav1 with different glucose solutions and cav2 with different temperature. (e,f) Reproduced with
permission [87]. Copyright 2017, Optical Society of America.

In general, with the rapid development of PCNC design and fabrication over the past few years,
PCNCs have been considered an excellent platform for nanoscale ultra-compact integrated sensor
array devices with ultra-high S and multiplexed sensing abilities owing to their ultra-small Q/V, as well
as high integrability with waveguides and photonic circuits [88].

3.5. Other Applications

Except for the applications of PCNCs in RI sensors, biosensors, and multiplexed sensors,
other sensing applications of the PCNCs also have been proposed, such as temperature sensing and
optomechanical sensing.

Temperature sensors have been widely used in many fields, like automobiles [89], environmental
applications [90], health care [91], and manufacturing [92]. For example, in 2016, Zhang et al. demonstrated
an ultra-sensitive temperature sensor with cascaded silicon PCNCs, as illustrated in Figure 5a.
To increase the S, they designed two PCNCs; one was the stack width modulated structure with the
light mode mainly localized in the SU-8 region, while another was parabolic-beam structure with the
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light mode strongly localized in silicon core, as depicted in Figure 5b,c. By combining the silicon with
SU-8, the S was greatly improved because of the opposite thermo-optic coefficients between them,
i.e. positive for silicon and negative for SU-8. Because the parabolic-beam cavity experienced a red
shift while stack width modulated cavity experienced a blue shift with the temperature increased,
the S measured experimentally of the sensor was around 162.9 pm/◦C, almost twice as high as the
conventional sensors based on silicon [93]. Since the sensitivity is enhanced, the proposed temperature
sensor can be potentially used for an on-chip system combining with the integrated low resolution
micro optical spectrometry such as an arrayed waveguide grating. In addition, the work also held the
potential for high-precision sensing by compensating thermal refraction effect based on two materials
with opposite thermo-optic effect.
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Figure 5. (a) Two cascaded PCNCs for high S temperature sensing. The PCNCs based on (b) stack
width modulated and (c) parabolic-beam. (a–c) Reproduced with permission [93]. Copyright 2016,
Optical Society of America.

PCNCs can also be applied for physical sensing by adjusting the coupling between a light field
and nanomechanical motion. Moreover, 1D-PCNCs have attracted great attention in optomechanical
sensing owing to their smaller size as well as the higher design flexibility. For example, Wu et al. in 2014
proposed a physical sensor based on a PhC split-beam cavity, achieving the detection of optomechanical
torque. The measurement of sub-pg torsional can be realized, obtaining the S of 500 MHz/nm for
dissipative coupling and 2 GHz/nm for dispersive coupling. In addition, as shown in Figure 6a, the S
of the cantilever-type mechanical resonance sensor was 1.2 × 10−20 nm/

√
Hz and 1.3 × 10−21 nm/

√
Hz

under environmental conditions and low vacuum, respectively [94]. In 2015, Kaviani et al. introduced
an optomechanical sensor with strong non-linear optomechanical coupling, low mass, and wide
light mode spacing [95]. As illustrated in Figure 6b, it was a photonic crystal “paddle nanocavity”
that combined working principles of membrane-in-the middle (MIM) cavities [96,97] and PCNC
optomechanical devices [98]. Leijssen et al. [99] then realized an optomechanical sensor using a sliced
PhC nanobeam, combining such strongly localized light fields with a low-mass mechanical mode,
as shown in Figure 6c. Eichenfield et al. [27] demonstrated an optomechanical sensor consist of
two Si3N4 nanobeams in the near-field of each other, forming a so-called “zipper” cavity. In 2017,
Du et al. introduced a resonant Lorentz force magnetic-field sensor based on dual-coupled PCNCs [100],
as shown in Figure 6d. Compared with the Lorentz force magnetometer of microelectro mechanical
systems (MEMS), the magnetic-field sensor presented the advantages of ultra-compact and a wide
working bandwidth (160 Hz). The sensor has a much smaller footprint and thus have a potentially
higher spatial sensing resolution of the magnetic field. It may be suitable for magnetometer arrays
employed for a magnetic marker.

Gas detection is indispensable in many fields such as medical, automation as well as environment
monitoring. The working principle of gas sensors is mainly based on conductance, capacitance, temperature
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detections [101,102] influenced by gas. For example, Feng et al. proposed the use of PCNC to obtain an
ultra-compact, low-cost, and high S spectroscopic gas sensor in 2012. The whole spectroscopic gas sensor
was composed of the radiation source, the interaction part and the detector [103], as illustrated in Figure 7a.
The PCNC contained seven tapered air holes and 10 mirror holes, as shown in Figure 7b. This modeling
achieved Q of 106 and obtained 0.19 nm resonance wavelength shift by 10−3 RI change. With increase of
the Q factor, the spectral resolution requirement and cost would be reduced while the sensitivity of the gas
sensor would be improved. It is believed that PCNC will provide a promising application prospect for
optical gas sensor.
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Figure 6. (a) SEM of a split-beam nanocavity. Reproduced with permission [94]. Copyright, 2014,
American Physical Society. (b) Schematic of the PhC paddle nanocavity. Reproduced with permission [95].
Copyright, 2015, Optical Society of America. (c) Resonances and geometry of the sliced nanobeam.
Reproduced with permission [99]. Copyright, 2015, Springer Nature. (d) Demonstrating of the magnetic
field sensor and its working theory. Reproduced with permission [103] Copyright 2017 Author(s).
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system based on the simple slope detection method. (d) A PCNC coupled to a bus waveguide. (c,d)
Reproduced with permission [104]. Copyright 2014, American Chemical Society.
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In 2014, Chen et al. proposed a CMOS-compatible PCNC, which was modified with a fluoroalcohol
polysiloxanes polymer, achieving the detection of the MeS concentration in the gas phase [104].
As shown in Figure 7d, the bus waveguide with two integrated grating couplers is used for coupling
light into PCNC. The range of the Q factor measured was from 50,000 to 80,000. They applied a
simple slope detection method with a probe laser, achieving the detection of analytes concentration
by monitoring resonance wavelength shift, as shown in Figure 7c. The response of the nanobeam to
MeS was 80 pm/ppm and the detection limit is 1.5 ppb, one order of magnitude lower than the value
obtained by other chemical sensors previously [104]. The work demonstrates a versatile and highly
integrated nanophotonic sensing platform that can be extended to detect other gas- and liquid-phase
substances, simply by utilizing appropriate coating materials to achieve selective functionalization.

4. Nanofabrication and Coupling Techniques

Integrated optic devices have been extensively investigated to conform the trend of miniaturization
and intellectualization due to the rapid advances of nano-manufacture technology [87]. The fabrication
process of PCNC devices is shown in Figure 8. The two major steps are the mask process and the
dry-etching process. The mask process mainly includes deep ultraviolet (DUV) lithography and
electron beam (E-beam) lithography, and the dry-etching process mainly includes inductively coupled
plasma (ICP) etching, electron cyclotron resonance (ECR) plasma etching and reactive ion etching
(RIE). Moreover, these fabrication processes have been applied in fabrication of PCNCs. For example,
Yang et al. fabricated nanoslotted parallel quadrabeam PhC cavity by using E-beam lithography and
RIE [54]. Quan et al. achieved the fabrication of PhC sensor chips with DUV lithography [81]. By using
E-beam lithography and ICP etching, Xu et al. fabricated a slotted PCNC with parabolic modulated
width stack [66].Micromachines 2019, 10, x FOR PEER REVIEW 15 of 20 
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In order to obtain ultra-high Q, other materials have been experimentally used for the fabrication
of PCNC devices, such as polymers, aluminum nitride and silicon nitride et al. In the year of 2011,
Quan et al. fabricated a high Q (Q = 36,000) polymeric PCNCs with two polymers [50]. In the same
year, Khan et al. fabricated and characterized silicon nitride PCNCs at visible wavelength with a high
Q of ~55,000 [105]. Later, Pernice et al. presented the fabrication and characterization of a high Q
aluminum nitride PCNC [106]. They obtained Q of 146,000 by using PCNCs coupled to integrated
optical circuits.

Except for the nanofabrication techniques, couplers are highly desirable in the development
of PCNC devices. Traditionally, several coupling methods include end-coupling, grating coupling
and micro-nano fiber coupling, have been extensively used for coupling light in and out of PCNCs.
For example, Quan et al. fabricated polymeric PCNCs and used tapered fiber to couple light into
cavities [61], as shown in Figure 9a. Dong et al. proposed a 1D PhC low-index-mode nanobeam cavity
and two grating couplers were fabricated for coupling light in/out to the cavity [107], as shown in
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Figure 9b. As shown in Figure 9c, Huang et al. designed PCNCs based on hetero optomechanical
crystals and used a tapered and lensed fiber to couple light in/out of cavities [108].
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Figure 9. (a) Schematics of measurement setup. FPC: fiber controller cavity, TF: tapered fiber, Pol: inline
polarizer. Reproduced with permission [61]. Copyright, 2011, Optical Society of America. (b) Top:
Microscopy image of the proposed sensor and coupler. Bottom: SEM of grating coupler (left) and PhC
cavity (right). Reproduced with permission [107]. Copyright 2019, Optical Society of America. (c) SEM
of 1D optomechanical crystal cavity with a micro-nano fiber coupler. Reproduced with permission [108].
Copyright 2016, SPIE.

In summary, the development of nanofabrication techniques promotes the investigation of PCNCs
with a view to miniaturization and intellectualization, as well as the development of integrated optical
devices. Moreover, coupling techniques are the key factors to solve the issue of optical transmission loss,
playing an important part in sensing applications of PCNCs. Therefore, nanofabrication and coupling
techniques need to be considered in the development of PCNC sensors. In the future, the micro-nano
optical sensors can be used in internet of things (IoT) and intelligent optical network. The advanced
and unique performance of the micro-nano optical sensors will play an important role in the future
development of converged, collaborative and co-automatic optical networks [109].

5. Conclusions

In this article, we have introduced the basic properties and sensing mechanism of 1D-PCNCs.
We reviewed sensing applications of 1D-PCNC sensors including ultra-high FOM RI sensing,
single nanoparticle and label-free molecule detection, integrated sensor arrays for multiplexed
sensing and other sensing applications. In addition, the nanofabrication and coupling techniques
of 1D-PCNC sensors were reviewed. Unambiguously, the 1D-PCNC will continue to generate new
opportunities for nanoscale optical sensing considering new paradigms about structures and functional
materials. We believe that the 1D-PCNC is potentially a promising platform for biosensing and other
lab-on-a-chip applications.
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