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The ability to sense dynamic biochemical reactions and material processes is particularly crucial for a wide range
of applications, such as early-stage disease diagnosis and biomedicine development. Optical microcavities-based
label-free biosensors are renowned for ultrahigh sensitivities, and the detection limit has reached a single
nanoparticle/molecule level. In particular, a microbubble resonator combined with an ultrahigh quality
factor (Q) and inherent microfluidic channel is an intriguing platform for optical biosensing in an aqueous envi-
ronment. In this work, an ultrahigh Q microbubble resonator-based sensor is used to characterize dynamic phase
transition of a thermosensitive hydrogel. Experimentally, by monitoring resonance wavelength shift and linewidth
broadening, we (for the first time to our knowledge) reveal that the refractive index is increased and light scatter-
ing is enhanced simultaneously during the hydrogel hydrophobic transition process. The platform demonstrated
here paves the way to microfluidical biochemical dynamic detection and can be further adapted to investigating
single-molecule kinetics. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.380238

1. INTRODUCTION

Monitoring and controlling the phase transition dynamics of
materials is very important for both fundamental studies and
practical applications [1–3], e.g., transformation of matter
state, ferromagnetic phase transition, superconductor dynam-
ics, and hydrogel phase transition dynamics. As a crucial phase-
transition material, hydrogels are a class of biomaterials with a
broad range of applications, such as in biochemistry and bio-
pharmaceutics [4–7]. To monitor the hydrogel phase-transition
process, several methods have been developed, including nu-
clear magnetic resonance (NMR) and rheology. However, the
NMR method is with high cost, requires specialized equip-
ment, and is hampered by low resolution in aqueous environ-
ments [8]. As for the rheology method, it cannot be easily
implemented to study rapid gelling dynamics or mechanically
weak materials [9]. On the other hand, optical microcavities of
ultrahigh quality factors (Q) and small volumes [10] can sig-
nificantly enhance light–matter interactions. Therein, whisper-
ing gallery mode (WGM) microresonator-based label-free
biosensors are renowned for their ultrahigh sensitivities and

low detection limit [11–19]. In particular, several WGM mi-
croresonator systems have achieved single nanoparticles
[20–33], molecules (e.g., viruses, proteins, and DNAs)
[34–46], and even atomic ions [47]. However, there have been
few demonstrations yet that these systems can be used to in-
vestigate the dynamics of biochemical reactions [48].

Herein, real-time monitoring of the hydrogel phase transi-
tion (i.e., hydrophilic transition and hydrophobic transition) in
WGM microbubble resonator (MBR)-based sensors is first
demonstrated by continuously monitoring both wavelength
shift and linewidth broadening simultaneously. Experimentally,
the thermosensitive hydrogel phase transition is optically con-
trolled by increasing/decreasing the irradiation light power
(∼1550 nm). During a hydrophilic to hydrophobic transition
process, an overall wavelength redshift ∼40 pm and a distinct
linewidth broadening over 10 times are observed, respectively.
The WGM linewidth broadening unambiguously reveals the
hydrogel phase transition due to the enhanced light scattering,
and the refractive index changes are detected by monitoring
wavelength shift. Note that compared with the wavelength shift
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sensing mechanism, the WGM linewidth broadening is im-
mune to noises, including thermal noise and laser frequency
noise in practical measurements. The results shown in this
work demonstrate that optical MBR is a promising platform
for further investigating the biochemical dynamics and mol-
ecule kinetics [44].

2. MBR FABRICATION AND
CHARACTERIZATION

The experimental measurement setup is shown in Fig. 1(a). The
MBR is chosen to investigate and characterize the phase transi-
tion of poly(N-isopropylacrylamide)-based hydrogel (PNIPA),
owing to its high Q factor, easy fabrication, and intrinsic micro-
fluidic characteristics. The PNIPA hydrogel fabrication recipe is
based on Ref. [49]. To fabricate the MBR, the capillary with a
tapered waist diameter of 30 μm (outer diameter) is first drawn
from a silica capillary (TSP-100170, outer diameter of 140 μm,
inner diameter of 100 μm, and n � 1:45) using a hydrogen
flame. Then, the tapered silica capillary is pressurized with three
atmospheric pressures of the air. The MBR (wall thickness is
1–2 μm) is formed by heating an internally pressurized silica
capillary using two counterpropagating focused CO2 laser
beams, where the wall in the heated region expands and becomes
thinner [30]. The typical MBR size used in the experiment is
∼80 μm in diameter. Here, the temperature-responsive PNIPA
hydrogel is employed for its critical temperature (∼32°C) lying
in the desired range of 25–35°C [49–52]. The PNIPA hydrogel
is synthesized by the in situ polymerization of the monomer in
deionized water (DI water) [49], and is filled into the MBR. The
thermosensitive phase transition in PNIPA is optically controlled
by adjusting the power of the irradiation light from a single-
mode fiber (SMF), as shown in Fig. 1(a). The control light is
chosen at infrared band (∼1550 nm), considering the significant

light absorption of water, leading to effective control of the
temperature changes in the PNIPA solution.

As shown in Fig. 1(a), a tunable laser (Newport, TLB-6712) at
780-nm wavelength band is used to efficiently excite the WGMs
of the MBR via fiber–taper coupling. A fiber polarization control-
ler is adjusted manually to control the polarization of the input
laser and achieve the maximum light coupling efficiency. The
transmission light signal is collected and detected in real time
by a low-noise photodetector (New Focus, 1801-FC) and ana-
lyzed by an oscilloscope. To demonstrate the ultrahigh Q factor
of the WGMs of the MBR, the MBR is coupled with the optical
microfiber through the evanescent field, and there is no contact
between the MBR and fiber. A representative transmission spec-
trum of a typical MBR filled with the PNIPA solution is shown in
Fig. 1(c). Although the absorption of the PNIPA solution to the
probe light can spoil the Q factors of the microbubble cavity, the
corresponding mode still possesses an ultrahigh Q factor of
9.11 × 107, as shown in Fig. 1(d). This is mainly due to the rel-
atively small field distribution of WGMs inside the PNIPA sol-
ution, as shown in Fig. 1(e). Remarkably, as depicted in Fig. 1(b),
the reaction dynamics (i.e., phase transition including hydrophilic
transition and hydrophobic transition) of the PNIPA is moni-
tored continuously by real-time tracking of the wavelength shift
and linewidth broadening when the control power of the irradi-
ation light changes. As the control power increases, the WGMs
exhibit redshift and linewidth broadening during the hydrophobic
transition process. Conversely, as the control power decreases, the
WGMs exhibit blueshift and linewidth narrowing during the
hydrophilic transition process.

3. MBR FOR MONITORING HYDROGEL PHASE
TRANSITION

To make the measurement more reliable and stable, the
fiber–taper is attached to the surface of the MBR during the

Fig. 1. (a) Schematic of the MBR platform for real-time monitoring of the dynamic reactions of hydrogel phase transition. The thermosensitive
phase transition of PNIPA is optically controlled by the irradiation light power (∼1550 nm) from an SMF. (b) Monitoring the phase transition
dynamics of the PNIPA solution by tracking the wavelength shift and linewidth broadening of a WGM. Insets, CCD images of the microbubble
with the PNIPA solution at hydrophilic and hydrophobic state, respectively. (c) Transmission spectrum of MBR with the PNIPA solution at
hydrophilic state. The enlarged view of the red square region is shown in (d). (e) Typical optical field distribution of a WGM in the MBR
by finite-element method simulation.
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experiment. The infrared light (∼1550 nm) is chosen as a sta-
ble local heating source (power fluctuation �0.01 dB) to fine-
tune the temperature of the MBR due to the balance between
the light absorption and heat dissipation. As a result, the irra-
diation light power is equivalent to locally changing the temper-
ature of PNIPA, and this laser heating method is extremely
suitable for the study of hydrogel phase transition inside the
MBR. Figures 2(a) and 2(b) show the evolution of transmission
spectra of an MBR filled with the PNIPA solution when the
control power of the irradiation light gradually changes. When
the control power of the irradiation light first increases from
0 to 3.00 mW, the WGM resonance appears redshifted as the
PNIPA hydrogel undergoes a hydrophilic to hydrophobic tran-
sition, which contributes to the increase of refractive index
[48]. Then, when the control light power decreases from 3.00
to 0 mW, the WGM resonance is blueshifted during the hydro-
philic transition process of the PNIPA hydrogel. It is found that
the resonance is not perfectly shifting back to the original
position after a cycle of hydrophilic–hydrophobic–hydrophilic
transition. This small hysteresis phenomenon in PNIPA phase
transition has been sufficiently demonstrated in previous work
[53,54]. The phase transition of PNIPA can be visually resolved
from the optical microscope images of the MBR, i.e., bright
state (hydrophilic) to dark state (hydrophobic), which is con-
tributed to by the enhanced light scattering [49], as will be
discussed in detail in the following section.

To correlate the optical power for heating to the actual tem-
perature change occurring in the MBR, a calibration curve
is made from the DI water-filled MBR. We confirmed that
the wavelength shift at 3.00 mW is 69.78 pm [black line in
Fig. 3(a)], corresponding to a temperature of ∼33°C, which
is higher than the transition temperature of ∼32°C [49].

Figures 3(a) and 3(b) show the typical resonance wavelength
shift and linewidth broadening, respectively, of MBR in
PNIPA, DI water, and air, as the irradiation light increases
power from 0 to 3.00 mW. We do the measurements after
a period of time (over 30 s), such that the temperature reaches
a stable condition at each laser power. We find that the wave-
length shift and linewidth broadening of the WGM can directly
reflect the phase-transition process of the PNIPA solution. The
transmission spectra are fitted by Lorentzian line shapes from
which the linewidth of a WGM can be obtained. This fitting
procedure is improved by an iteration of weighted least-squared
regression [22]. It is intuitive that for the MBR filled with air,
minor wavelength shift and linewidth broadening are observed
as the power of the irradiation light increases because of the
weak absorption of silica. On the other hand, for the MBR
filled with DI water and PNIPA hydrogel, its wavelength
strongly redshifts because of the increasing power of the irra-
diation light. The water-core MBR shows an almost linear
wavelength redshift and no obvious linewidth change, since
the infrared irradiation light only heats the water. Note that a
hydrophilic to hydrophobic transition process of PNIPA can be
clarified as four stages. (i) Pure hydrophilic state (0–1.44 mW):
the PNIPA solution absorbs the control light, and the WGM
of the MBR is redshifted due to the thermal-optic effect of
silica. (ii) Subtransition state (1.44–2.04 mW): the PNIPA
starts to transform from hydrophilic to hydrophobic state and
absorbs energy from the environment [55]. In this transition
process, on the one hand, the wavelength shift slope on irra-
diation power is decreased. We anticipate that the wavelength
shift can mainly be attributed to the change of physical proper-
ties of PNIPA (e.g., thermal-optic response, volume shrink)
[56,57]. On the other hand, the linewidth is increased, which

Fig. 2. Transmission evolution of the microbubble with the PNIPA hydrogel when the control power of the irradiation light first (a) increases
from 0 to 3.00 mW, and then (b) decreases from 3.00 to 0 mW; (c) CCD images of a cycle of phase-transition process of the PNIPA hydrogel. The
microbubble changes from transparent hydrophilic state to opaque hydrophobic state due to the increased scattering. Inset, the scale bar is
125 μm.
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is induced by the light scattering. (iii) Transition state (2.04–
2.52 mW): with irradiation light power further increased, the
PNIPA exceeds the critical temperature. The phase transition is
triggered, which results in the strong increase of the refractive
index (wavelength redshift) and light scattering (linewidth
broadening). Compared with the subtransition state, the wave-
length shift and linewidth broadening in this stage are signifi-
cantly enhanced by over 2 times and 8 times, respectively.
(iv) Pure hydrophobic state (>2.52 mW): the phase-transition
process of PNIPA is completed, as indicated by the nearly con-
stant linewidth of the WGM. The wavelength redshift is only
contributed to by the light absorption of water. Note that the
wavelength shift is dominated by the temperature change in
silica, where most of the mode energy is confined. The combi-
nation of wavelength shift and linewidth broadening provides
the unambiguous evidence of the PNIPA phase-transition
process.

Finally, to continuously measure the dynamic phase transi-
tion of PNIPA, the wavelength shift and linewidth broadening
of the MBR are monitored in real time, as shown in Figs. 4(a)
and 4(b), respectively. When the irradiation light is off, the
resonance wavelength and linewidth are almost unchanged, as

expected. In contrast, the resonance wavelength experiences
an overall redshift when the irradiation light power (3.00 mW
at 1550 nm) is switched on at 12.5 s. The sharp increase of
wavelength redshift in the beginning is mainly induced by the
sudden temperature rise of the MBR, which is contributed to
by the PNIPA absorption and heat conduction. The increase
in temperature triggers the phase transition of PNIPA. During
the following hydrophilic to hydrophobic transition process,
the wavelength shift is contributed to by the variations of the
MBR temperature and refractive index. First, a small blueshift
of 8.02 pm in wavelength is observed (13.22–15.62 s), since
the PNIPA hydrophobic transition absorbs the heat from the
environment [55], resulting in the temperature decrease of
the MBR. Note that in this process, the contribution from
the MBR temperature decrease dominates over that of the re-
fractive index increase. Then a significant wavelength redshift
(39.23 pm) is obtained due to the gradual increase of the MBR
refractive index during the PNIPA hydrophobic transition pro-
cess. Figure 4(b) shows the corresponding WGM linewidth
change as the PNIPA undergoes a hydrophilic to hydrophobic
transition. The linewidth is increased significantly from 0.38 to
4.34 GHz owing to the enhanced light scattering of the PNIPA

Fig. 4. (a) Real-time WGM resonance wavelength shift and (b) linewidth broadening during the PNIPA hydrogel phase transition (a hydrophilic
to hydrophobic transition) monitored by an MBR. The control power of the irradiation light is switched on at ∼12.5 s. During the whole phase-
transition process, a small blueshift of 8.02 pm in wavelength is first observed within 13.22–15.62 s; then the overall redshift of the resonance
wavelength is 39.23 pm, and the maximized linewidth broadening is 3.96 GHz.

Fig. 3. (a) WGM wavelength shifts and (b) linewidth broadenings as a function of control power of the irradiation light from 0 to 3.00 mW,
when the MBRs are filled with air (blue line with triangular marker), DI water (black line with square marker), and PNIPA hydrogel (red line with
circular marker). Compared with the result of microbubble cavities filled with air and DI water, note that a hydrophilic to hydrophobic transition
process of PNIPA can be clarified as four stages: (i) pure hydrophilic state (0–1.44 mW); (ii) subtransition state (1.44–2.04 mW); (iii) transition state
(2.04–2.52 mW); (iv) pure hydrophobic state (>2.52 mW).
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hydrophobic transition. Moreover, the optical responses of the
MBR to the phase transition of PNIPA have been well repro-
duced in more than five devices.

4. CONCLUSION

In summary, we experimentally characterize the thermosensi-
tive PNIPA hydrogel phase transition via an ultrahigh Q MBR
sensor. By controlling the output power of the irradiation light,
the optical tuning of the PNIPA hydrogel phase transition has
been successfully achieved. Furthermore, we reveal the refrac-
tive index and temperature changes during the different stages
of the phase transition process by monitoring the wavelength
shift and linewidth broadening in real time. Our work demon-
strates that MBR-based biosensors are promising for further
quantitatively investigating the energy change during a phase
transition, thus providing insights into their dynamic reaction
mechanisms.
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