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Abstract: Integrated circuit (IC) industry has fully considered the fact that the Moore’s Law is slowing down or ending. Alternat-
ive  solutions  are  highly  and  urgently  desired  to  break  the  physical  size  limits  in  the  More-than-Moore  era.  Integrated  silicon
photonics technology exhibits distinguished potential to achieve faster operation speed, less power dissipation, and lower cost
in  IC  industry,  because  their  COMS  compatibility,  fast  response,  and  high  monolithic  integration  capability.  Particularly,  com-
pared with other on-chip resonators (e.g. microrings, 2D photonic crystal cavities) silicon-on-insulator (SOI)-based photonic crys-
tal  nanobeam cavity  (PCNC) has emerged as  a  promising platform for  on-chip integration,  due to their  attractive properties  of
ultra-high Q/V,  ultra-compact  footprints  and  convenient  integration  with  silicon  bus-waveguides.  In  this  paper,  we  present  a
comprehensive review on recent progress of on-chip PCNC devices for lasing, modulation, switching/filting and label-free sens-
ing, etc.
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1.  Introduction

Over  the  past  few  decades,  the  mainstream  of  integ-
rated  circuit  (IC)  industry  has  been  mainly  powered  by
Moore’s  Law,  which  is  targeted  at  achieving  faster  operation
speed,  less  power dissipation,  and lower  cost[1].  The key driv-
ing  force  behind  Moore's  Law  is  the  ongoing  MOSFET  scal-
ing  down  to  nanoscales[2, 3].  As  shown  in Fig.  1(a),  the  num-
ber  of  transistors  that  can be purchased per  dollar  is  increas-
ing, but since 2012 it almost encounters a bottleneck. Corres-
pondingly,  the feature size of the transistor is  significantly re-
duced  at  first,  but  slowly  decreasing  to  the  order  of  ~10  nm
in 2017. However, this trend is beginning to bump up against
the  fundamental  physical  limits  on  their  size,  which  means
the  approaching  end  of  the  Moore’s  Law.  As  shown  in
Fig.  1(b),  the  final  International  Semiconductor  Technology
Roadmap  (ITRS)  report  predicts  transistor  scaling  will  end  in
2021  and  clearly  states  that  it  will  no  longer  follow  the  path
of decreasing process nodes after 10 nm[4, 5].

In  fact,  Moore’s  Law  is  a  techno-economic  model  that
has  enabled  the  information  technology  industry  to  double
the  performance  and  functionality  of  digital  electronics
roughly  every  two  years  within  a  fixed  cost,  power,  and
area[6]. Fig.  2(a) shows  that  the  main  technological  develop-

ment  trends  will  follow  two  paths  in  the  More-than-Moore
era. The first path we call “More than Moore”, is from the func-
tion,  to  achieve  multi-functional  expansion  of  the  circuit.  An-
other  path  we  call  “More  Moore”  is  to  continue  to  increase
the  density  of  integrated circuits  through the  miniaturization
of  devices.  However,  because  traditional  materials  are  diffi-
cult  to  break  through  their  own  limits,  we  may  further  pro-
mote  the  development  of  integrated  circuits  through  the  re-
search  and  development  of  new  materials,  new  structures,
and  new  principle  devices,  and  eventually  move  toward
three-dimensional  (3D)  chip  stacks  integration[7, 8].  Different
and revolutionary strategies and approaches are highly and ur-
gently  needed  to  meet  the  requirements  of  faster,  cheaper,
and more energy efficient in the More-than-Moore era. So far,
silicon  photonics  technology  exhibits  distinguished  potential
and  has  become  one  of  the  leading  technological  solutions
for integrated photonics that target applications such as data
centers,  telecommunications,  and high-performance comput-
ing (HPC)[9].  As shown in Fig.  2(b),  its total market size will  in-
crease dramatically in these fields. Approaching the opportun-
ity  of  large scale  marketization,  silicon photonics  have drawn
intensive  attention,  driven  by  its  advantages,  market  de-
mand, and national strategy.

Silicon  photonics  have  been  widely  investigated  in  re-
cent  years,  which  benefits  from  academic  research  efforts
and available commercial  complementary metal–oxide–semi-
conductor  (CMOS)  process  for  potential  mass-production  ap-
plications[10−12]. Versatile passive- and active-silicon-based nan-
ophotonic devices have been proposed for applications includ-
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ing optical interconnects, optical routers, remote telecommu-
nications,  modulation,  and sensing.  However,  there  are  some
challenging  tasks  need  to  be  solved,  including  the  intrinsic
properties limits of pure silicon and the CMOS fabrication com-
patibility  for  on-chip  silicon  sources[10].  Recently  researchers
have reported the integrated stimulated Raman scattering silic-
on  lasers[13],  germanium-on-silicon  lasers[14],  and  hybrid  III−V
on silicon lasers[15],  but there are some problems, such as un-
desirably  high  optical  external  pumping,  insufficient  lasing
emission, and complicated fabrication process. Hybridizing sili-
con  waveguides  and  resonators/cavities  with  active  materi-
als  have been considered as an alternative solution for  lasing
emission, optical modulation, and detection. This hybrid integ-
ration  on  silicon  has  shown  potential  advantages  because  of
its  low  cost,  easy  processing,  and  various  active  materials[16].
Many  investigations  about  the  hybrid  integration  on  silicon
have  been  demonstrated,  including  semiconductor  nano-
tubes[17],  superconducting  nanowires[18],  polymers[19],  single
III–V  semiconductor  nanowires[20],  transition-metal  dichalco-
genides  (TMDs)[21] or  graphene[22].  In  terms  of  the  view,  the
natural  host  photonic  structures  of  active  materials  depos-
ited  or  grown  on  silicon  are  microcavities,  because  of  their
high quality factors (Q) and low mode volumes (V)[23, 24]; there-
fore,  large Q/V is  helpful  for  laser  threshold  reduction,  ultra-
low  voltage  and  energy-efficient  optical  modulation  and  ul-
tra-sensitive label-free sensing.

Particularly,  photonic  crystal  nanobeam  cavity  (PCNC)  is
considered  as  an  ideal  platform  for  on-chip  integration,  due
to  the  advantages  of  an  ultracompact  footprint,  enhanced
light–matter interactions, high integrability with optical wave-

guides/circuits,  and  compatibility  with  CMOS  processes[25, 26].
To  date,  various  optical  devices  based  on  PCNC  have  been
demonstrated, such as optical lasers, optical modulators, optic-
al  switches/filters,  and  label-free  sensors.  By  incorporating
these  photonic  devices,  versatile  and  reconfigurable  photon-
ic  networks  can  be  realized.  Thus,  PCNC-based  devices  in
near  infrared wavelengths could be potentially  significant  for
future on-chip integrated silicon photonics. In this review, we
will focus on photonics devices based on PCNCs.

2.  On-chip PCNC devices for lasing

Photonic  crystal  lasers,  with  large Q/V,  have  enhanced
photon  emission  below  threshold  through  the  Purcell  effect,
and can operate  at  a  higher  modulation speed[27].  Compared
with  two-dimensional  (2D)  photonic  crystal  slabs,  the  PCNCs
with exceptional Q/V in a much smaller footprint have attrac-
ted particular interest. So far, PCNC lasers based on various ma-
terials have been demonstrated using different nanobeam cav-
ities[27−40],  as  summarized  in Fig.  3.  Insets  show  the  device
structures, materials, and threshold power, respectively. It can
be found that III−V semiconductor compounds (gallium arsen-
ide, GaAs and indium phosphide, InP) with high electron mobil-
ity  have  proved  extremely  successful  for  the  realization  of
lasers.  However,  the  major  problems  of  III−V  semiconductor
compounds  are  high  cost  and  poor  CMOS  compatibility,
which  limits  its  further  development  for  on-chip  integrated
photonics  application.  Compared  with  III−V  semiconductors
compounds,  CMOS-compatible  SOI-based  photonics  devices
are a promising platform for realizing low cost and high dens-
ity on-chip integrated photonics. However, silicon cannot pro-

 

F
e

a
tu

re
 s

iz
e

 (
n

m
)

T
ra

n
si

st
o

r 
co

u
n

t 
m

il
li

o
n

/$

P
h

y
si

ca
l g

a
te

 le
n

g
th

 (
n

m
)

(a) (b)200 25

160

120

80

40

0

20

15

2002 2004 2006 2008 2010 2012 2014 2015 2017
Year

2015 ITRS Report

(2021,10 nm)

2013 2016 2019 2022 2025 2028 2031
Year

10

25

20

15

10

5

0

 

Fig. 1. (Color online) (a) Number and size of transistors bought per dollar. Source: The end of Moore’s law. The Economist, April, 2015. (b) The ITRS
most recent report predicts transistor scaling will end in 2021. Source: International Semiconductor Technology Roadmap (ITRS).
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Fig. 2. (Color online) (a) The development trend of the semiconductor industry in the More-than-Moore Era. Source: International Semiconduct-
or Technology Roadmap (ITRS). (b) Silicon photonics 2015–2024 market forecast. Source: Silicon Photonics Report Yole Développement.
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duce  light  directly  due  to  its  natural  indirect  band  gap.
Hence,  recently  silicon-based  hybrid  laser  platforms,  such  as
using high-performance III−V and 2D materials attached to sil-
icon, have attracted much attention[37, 38].

For example, Lee et al. demonstrated an ultracompact nano-
beam  laser  by  effectively  integrating  a  wavelength-scale  uni-
directional  III−V materials  onto a SOI waveguide[37],  as shown
in Fig.  4(a).  The light from the III−V laser was initially coupled
to the III−V waveguide, and was connected to one end of the
nanolaser.  The light was then vertically  coupled from the up-
per  III−V  waveguide  to  the  lower  SOI  waveguide  via  a  direc-
tional  coupler  in  the  overlapping  region  of  the  III−V  wave-
guides and the SOI waveguides. At last, the light from the nanola-
ser  propagated  along  the  low-loss  silicon  waveguide[37].  The
SEM  of  the  proposed  III−V/Si  nanobeam  laser  was  shown  in
Fig.  4(b).  It  is  worth  mentioning  that  the  coupling  efficiency
between  the  InGaAsP  nanolaser  and  conventional  SOI  wave-
guide reached ~83%.  The lasing started at  a  threshold  pump
power  of  ~0.2  mW,  and  the  wavelength  was  1556  nm  in
Fig.  4(c).  It  has  demonstrated  an  efficient  hybrid  integration
of  a  wavelength-scale  photonic  crystal  nanolaser  and  a  SOI
waveguide.  This  nanoscale  hybrid  III−V/Si  laser  is  considered
as  a  promising  platform  for  future  compact,  faster,  and  effi-

cient silicon nanophotonics[37].
Monolayer transition-metal dichalcogenides (TMDs) exhib-

it  great  potential  to be the smallest  and efficient  optical  gain
media  for  low  energy-consumption  nanolasers  due  to  its
strong excitonic emission[38, 41].  For example, Ning et al. firstly
demonstrated  the  use  of  a  silicon  PCNCs  and  a  monolayer
TMD to generate a room-temperature laser operation in the in-
frared region[38],  as shown in Fig. 5(a).  This was mainly due to
the  unique  combination  of  a  TMD  monolayer  with  a  silicon-
transparent wavelength emission,  and a high-Q silicon PCNC.
Fig. 5(b) described the lasing emission spectrum under differ-
ent  pump  power.  As  the  pump  power  increased,  it  showed
clearly  the  appearance  of  strong  lasing  peaks  at  1052  nm  of
the  first  mode  and  1132  nm  of  the  second  mode.  To  repres-
ent  the  lasing  characteristics  more  accurately  in Fig.  5(c),  PL
spectrum  was  measured  at  increasing  pump  levels,  showing
a  clear  lasing  emission  peak  at  1132  nm  and  a  very  low  las-
ing  threshold  ~  97 μW.  Moreover,  the  lasing Q-factor  could
be  extracted  from  the  data  in Fig.  5(c) and  this  was  the
highest Q-factor  of  any  2D  TMD-based  laser  reported  so  far.
The  SOI-based PCNCs  would  be  considered as  very  attractive
for integrated silicon nanophotonics at the wavelength trans-
parent  to  silicon[38].  Adding  only  a  monolayer  of  non-silicon
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Fig. 3. (Color online) A summary of PCNC lasers (2010–2018). Insets show the device structures, materials, and threshold power, respectively.
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material  may  be  the  closest  approach  to  a  silicon  laser  as
ever possible, which opens opportunities for CMOS process in-
tegration.  The unique combination structure of  MoTe2–nano-
beam cavity  can possibly be used for  2D TMD-based electric-
ally driven lasers via electrical injection[33], and thus is a prom-
ising platform for optical communications.

3.  On-chip PCNC devices for modulation

Silicon  photonics  technology  is  poised  to  resolve  short
reach  interconnects,  and  optical  modulators  are  essential  for
such  an  interconnect.  In  addition,  Pockels  effect[42],  Kerr  ef-
fect[43] and  the  Franz–Keldysh  effect[44] are  the  main  electric-
optic (EO) effects that cause electric absorption or electric re-
fraction.  In  order  to  realize  the  optical  modulator,  one  meth-
od  is  based  on  changing  the  optical  properties  of  the  wave-
guide  medium  (i.e.  refractive  index  or  optical  absorption)
through  linear  EO  effect[45, 46] or  free-carrier  dispersion[47, 48].
Another  method  is  to  control  the  properties  of  the  wave-
guide medium by adopting an optical pumping, thereby actu-
ating the nonlinear optical phenomena in the waveguide[49].

Several  parameters  have  been  used  to  characterize  the
performance of  EO modulator:  footprint,  modulation voltage,
modulation speed, extinction ratio,  and energy consumption.
So  far,  various  silicon  hybrid  EO  modulators  have  been
achieved.  But  for  waveguide-based  modulators,  they  have
large footprints and high-power consumptions due to the in-
teraction lengths about several tens of micrometers[22, 50]. The
micro-ring  resonator  (MRR)-based  modulators  increase  bend-
ing  loss  and  decrease Q factor,  resulting  in  high  power  con-

sumption  and  low  modulation  efficiency[51, 52].  Recently,
PCNC has  been extensively  used as  EO modulators  due to its
excellent properties namely ultrasmall footprints and conveni-
ent integration with bus-waveguides. However, due to the ab-
sorbed  distortion  caused  by  carrier  dispersion  and  the  diffi-
culty  of  direct  PN  doping  in  silicon  nanobeam  structures.
Therefore,  it  is  necessary  to  hybrid  integrate  with  emerging
materials,  such as  2D materials,  lithium niobate,  EO polymers
etc.  In  particular,  the  2D  materials  and  lithium  niobate  integ-
rated  on  silicon  platform  are  becoming  fully  CMOS-compat-
ible.  Existing  PCNC-based  EO  modulators  have  been  pro-
posed including those based on a Si-graphene hybrid[53, 54],  a
Si-organic  hybrid[55, 56],  and  a  Si–lithium  niobate  hybrid[57, 58].
Here,  several  works  are  listed  in Table  1 in  chronological  or-
der. This predicts that tremendous efforts have been made to-
wards realizing smaller size and high-performance optical mod-
ulators by hybrid integrating with new materials.

We  can  find  that  many  works  based  on  the  combination
of PCNC and new materials have been reported[46, 53, 60]. Espe-
cially, graphene as an active medium is attracting interest be-
cause  of  its  high  carrier  mobility[61] and  gate-controllable
broadband absorption[62]. All-optical modulator has been the-
oretically  proposed  by  using  the  strong  Kerr  effect  of  gra-
phene  with  PCNC[49].  However,  the  feasibility  of  these  works
is  demonstrated  through  simulation,  which  makes  it  a  prom-
ising candidate for achieving modulators experimentally.

4.  On-chip PCNC devices for switching/filting

Optical  switch  is  widely  used  in  optical  communicati-
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Fig.  4.  (Color online) (a)  Schematic and (b) SEM of the proposed hybrid III−V/Si  nanolaser attached to a conventional silicon-on-insulator (SOI)
waveguide. (c) Measured output power near the end of the SOI waveguide (black) and near the InGaAsP nanobeam (red) against incident peak
pump power. The inset shows a lasing emission spectrum near 1550 nm.
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Fig. 5. (Color online) (a) Schematic of the proposed room temperature, suspended silicon nanobeam laser with a monolayer MoTe2 on top. The cor-
responding lasing spectra of  the nanobeam laser under different pump power levels  (b)  using a grating resolution:  150 g/mm (0.41 nm),  and
(c) using a grating resolution: 600 g/mm (0.09 nm).
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on[63], optical computing[64], optical interconnect and an optic-
al  information  processing  system[65].  Due  to  the  large  capa-
city of the optical switch array and the high integration of silic-
on-based chips, the optical switch should have small size and
low  power  consumption.  Several  structures  have  been  pro-
posed  to  achieve  optical  switch,  including  silicon  microring
resonators  (MRRs)[66] and  Mach–Zehnder  interferometers
(MZIs)[67].  However,  the  radius  of  MRR  is  generally  in  the  or-
der  of  tens  of  microns,  and  the  arm  length  of  MZI  is  also  in
the  order  of  hundreds  of  microns  or  even  millimeters.  There-
fore, the key technology in realizing the optical switch is to re-
duce the device size and energy loss.

PCNCs  are  increasingly  gaining  interest  in  optical  switch
due to  the  advantages  of  high Q/V.  Therefore,  it  could  be  an
effective  method  in  realizing  low  power-consumption  optic-
al switches. For comparison, Table 2 summarizes the perform-
ances  of  some  PCNC-based  optical  switches.  For  thermo-op-
tic (TO) switch, Su et al. proposed and experimentally demon-
strated  a  2  ×  2  TO  crossbar  switch  based  on  dual-PCNCs[69].
The  cavity  resonance  wavelength  could  be  red-shifted  via
thermally  perturbing  the  refractive  index  of  silicon,  and  then
TO  switch  can  be  realized.  Meanwhile,  Su et  al. proposed  a
compact 2 × 2 EO switch based on dual PCNCs with identical

PN  junctions  respectively  using  the  same  schematic  diag-
ram[73].  To realize the EO switch,  an external bias voltage was
applied on the PN junction. This changed the width of the de-
pletion  region,  thereby  tuning  the  refractive  index  of  silicon
PCNC. Miniature all-optical switches with high-speed and low
power attract much attention in communication networks be-
cause  of  its  versatility,  such  as  optical  logic  operation[77],
wavelength  conversion[78],  optical  demultiplexing[79],  etc.  So
far, all-optical switch based PCNC has been achieved by sever-
al  methods,  such  as  using  Fano  resonance[80],  multi-channel
switch[75] or  silicon-polymer  hybrid  structure[81].  These  works
show that all-optical switches have great potential in improv-
ing  optical  information  processing  capacity  and  reducing
the  power  consumption  of  on-chip  all-optical  signal  pro-
cessing[80].

With  the  advancement  of  photonic  integration  techno-
logy, the filters have drawn much attention due to highly en-
ergy-efficient  tunability[82].  The  tunability  can  be  achieved
through TO effects[83], electromechanical effects, and opto-elec-
tro-mechanical  effects[84, 85].  Generally,  direct  reconfiguration
based  on  TO  effect  is  realized  by  integrating  a  microheater
on  a  silicon  waveguide[86, 87].  Note  that  the  TO  effect  is  over-
whelmingly  preferred  for  high  tuning  efficiency,  a  large  tun-

Table 1.   Comparison with PCNC-based modulators.

Structure Material Device footprint
(μm2)

Modulation
voltage (V)

Modulation
speed (GHz)

Extinction
ratio (dB)

Energy
consumption (J/bit) Year

Light out

x
y

z

Polymer

SOX layer
Si layer

Light in Si substrate

Ele
ctro

de

Ele
ctro

de Si-polymer 7.7 0.2 86 13 – 2011[45]

Si 20 0.1 10–5 10 0.5 2013[59]

Si 4 0.62 20 6 1.4 × 10–17 2014[47]

Al
Al

Si

p n

s
1.2 μm

y=1.4 μm

x=
3

.5
 μ

m

t=220 nm

z=50 nm

silica

Si 7 1 1.3 3 4.2 × 10–14 2014[48]

SiO2

Graphene
Input Metal

Metal

Output

Si slab
Si-graphene 20 −6.4 133 12.5 6 × 10–13 2015[53]

Output

Input z

xy

Si-polymer 3.6 1 224 10.9 7.5 × 10–16 2018[46]

Output

Cavity 1D-photonic crystal

Input

z
x

y

Si- ITO 1.892 0.1 119.89 3.484 5.9 × 10–19 2019[60]

Journal of Semiconductors    doi: 10.1088/1674-4926/42/2/023103 5

 

 
D Q Yang et al.: Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics

 



ing  range  and  those  requiring  simple  fabrication  based  on
SOI, due to the high TO coefficient of silicon (1.86 × 10−4 K−1),
corresponding  the  temperature  sensitivity  of  ~80  pm/K[88].
Zhang et al. demonstrated a TO tunable filter based on a sus-
pended  PCNC  shown  in Figs.  6(a) and 6(b).  We  can  see  that
the  TO  tunability  filters  possess  record  high  tuning  efficiency
of 21 nm/mW and the widest tuning range of ~43.9 nm[89], as
shown  in Fig.  6(c).  This  device  has  been  considered  as  an
ideal platform for integrated photonics circuits, such as cross-
bar  switches  and  Bragg  grating  filters[89],  due  to  the  advant-
ages of ultra-high tuning efficiency and rapid response.

5.  On-chip PCNC devices for label-free sensing

Ultra-sensitive  and  label-free  detection  of  the  analyte

plays an important part in the field of homeland security,  en-
vironment  protection  and  medical  diagnostics[90−93].  Optical
microcavities  such  as  whispering  gallery  mode  (WGM)  ca-
vities,  Fabry–Pérot  (F–P)  cavities  and  photonic  crystal  (PhC)
cavities  are  considered  as  promising  candidates  for  label-
free  sensing[94−97].  Particularly,  PCNCs  have  extensively  att-
racted  attentions  due  to  the  advantages  of  ultrahigh Q/V,
ultra-small  footprint,  and  excellent  CMOS  compatibility
properties[98].

Hence, most research has focused on the optimization of
PCNCs  design  to  improve  sensitivity,  as  shown  in Table  3.
With  the  rapid  development  of  technology,  micro-nano
devices are moving towards high miniaturization and integra-
tion.  Much  research  has  been  proposed  for  label-free  sens-

Table 2.   Comparison with PCNC-based optical switches.

Principle Structure Material Device footprint
(μm2)

Switching
power

Extinction
ratio (dB)

Insertion
loss (dB) Year

Thermo-optic effect

Drop

Through

ln

Si – 1 mW 15 0.66 2016[68]

Drop

Nanobeam

Heater

50 μm

Grating coupler

In1 3 2Through Si 4500 0.16 mW 15 1.5 2017[69]

lnput

Drop1

Through

Drop2

Si 14 – – 1.5 2020[70]

Electro-optic effect

3-dB

coupler

P PN N
V Si – 474 aJ/bit – 2 2015[71]

2 × 2

MMI

2 × 2

MMI

Ge

V

Ge-on-Si3N4 – 8 pJ/bit 6 0.97 2016[72]

1

3 p

n 2

4

In

Si 200 2.6 fJ/bit 14.2 1.2 2016[73]

Kerr nonlinearity

lnP PhC cavity

with surface

QWs

Si substrate

SiO2

Si

waveguide

BCB
InP 10 6 mW 3.6 – 2014[74]

SiO2

Input
Nanocavities

Si Photonic 
crystal airholes

CH1
CH2

CH3
CH4

Output
λ1

λ2

λ3

λ4

Si 31 1.6 pJ 24 4 2018[75]

SiO
2

Si

Probe

Pump

PS Si+polymer 16 0.76 pJ – – 2020[76]
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Table 3.   Comparison with PCNC-based optical sensors.

Structure Material Sensitivity (nm/RIU) Q Detection limit Year

Si 83 35000 2 pM 2013[99]

Si 200 20000 – 2012[100]

Si 269 27000 – 2012[101]

Polymer 386 36000 10 mg/dL 2011[102]

Si 410 ~10000 – 2013[103]

Si 451 7015 10 ag/mL 2014[104]

InGaAsP 461 ~10000 – 2015[105]

Porous Si 1023 9000 1.6 pm/nM 2019[106]
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Fig.  6.  (Color  online)  (a)  Schematic  of  the  proposed  TO  tunable  nanobeam  filter.  (b)  SEM  image  of  the  fabricated  PCNC  filter.  (c)  Measured
wavelength shifts against heating powers.
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Fig. 7. (Color online) (a) SEM image of the proposed parallel quadrabeam PCNCs. (b) Real-time monitoring of streptavidin/biotin binding. Inset: res-
onance shift as a function of streptavidin concentration in PBS. (c) Resonance shifts as a function of the refractive indices with different concentra-
tions ethanol/water solutions. (d) SEM of nanoscale sensor array. (e) Red shift of the targeted resonator occurs because of the higher refractive in-
dex of the CaCl2 solution. (f) Experimental data showing the redshifts for various refractive index solutions.
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ing  by  integrating  microfluidics  with  PCNCs.  For  instance,
Yang et  al. presented  a  nanoslotted  parallel  quadrabeam
photonic  crystal  cavity  sensor,  with  high  sensitivity  of  451
nm/RIU  and  high-Q of  7015  in  aqueous  environments  at
wavelength  of  1550  nm[104],  as  shown  in Fig.  7(a).  They  also
monitored  streptavidin-biotin  binding  affinity  in  phosphate
buffered saline (PBS) solution and the detection limit is down
to 10 ag/mL, as shown in Figs. 7(b) and 7(c). In this configura-
tion,  the  PDMS  microfluidic  channel  is  integrated  with  PCNC
sensors,  which  provides  a  promising  platform  for  multiplex-
ing  on  chip  and  point-of-care  medical  diagnostics.  In  addi-
tion,  they  also  show  the  potential  application  in  single-mo-
lecule  detection[107].  On  the  other  hand,  works  integrating
multi-channel microfluidic have been proposed for multiplex-
ing sensing.  Mandal et al. demonstrated a nanoscale optofluid-
ic  sensor  arrays  with  multiple  channels  based  on  PCNCs,  as
shown  in Fig.  7(d)[108].  To  verify  sensing  ability  of  the  nano-
scale  optofluidic  sensor  array,  fluidic  architecture  is  embed-
ded  in  sensor  array  and  achieving  the  RI  resolution  of  7  ×
10−5,  corresponding  to  the  mass  limit  of  around  35  ag  in
the  measurement  of  water  and  CaCl2 solution,  as  shown  in
Figs. 7(e) and 7(f)[108]. This research opens the door for the de-
tection sensitivity at the tens of attograms level in the field of
label-free  sensing  and  shows  the  multiplexing  capabilities  of
this architecture.

In  conclusion,  with  the  rapid  development  of  silicon
photonics devices, higher integration, and miniaturization are
required.  Among  these,  PCNCs  are  considered  as  candidates
for  on-chip  label-free  sensing  and  multiple  channel  sensing,
due  to  the  advantages  of  an  ultra-small  footprint,  ultrahigh
Q/V, and excellent CMOS compatibility properties[109].

6.  Summary

To  be  implemented  in  practice,  technical  challenges  are
existed  in  manufacturing.  The  silicon  photonics  chip  can  be
fabricated  cost-effectively  with  CMOS-compatible  techno-
logy. However, the fabrication tolerance limits the practical ap-
plications  of  PCNCs,  which  makes  them  impractical  for  high-
yield  production.  Fabrication  tolerance  in  the  position  and
size of  the PhC structures may result  in  fluctuations of  reson-
ance wavelength and Q factor[110],  and it  also limits  the para-
meter  space  for  sweeping  device  design[111].  So  far,  various
strategies  to  improve  the  fabrication  tolerance  have  been
demonstrated,  such  as  using  UV-lithography  in  fabricati-
on[112],  allowing  precision  wavelength  trimming  of  devic-
es[113], controlling the Q by optimizing configurations[114], and
using  a  subwavelength  grating  (SWG)  structure[115].  An  ultra-
compact  PCNC  with  large  fabrication  tolerance  is  desirable
for  silicon-based  photonic  integrated  circuits  and  there  is  a
need  for  further  studies  and  industry  efforts  to  realize  out-
standing fabrication tolerance.

In  this  paper,  we  review  recent  advances  on  photonics
devices  for  lasers,  modulators,  switches/filters,  and  sensors
based  on  PCNCs.  It  has  been  shown  that  PCNCs  with  ul-
trahigh Q/V,  ultrasmall  footprint  are  an  idea  platform  for  the
monolithic  integration  and  extending  the  capability  of  these
optical  devices,  in  which  the  key  is  that  the  PCNCs  can
greatly  improve  light-matter  interaction.  The  optical  devices
show  good  characteristics  and  high-volume  production,
which  are  expected  to  benefit  large-scale  photonic-integ-
rated  circuits  on  silicon  in  the  near  future.  Furthermore,

photonic  integration  should  not  be  required  to  surpass  elec-
tronic  integration,  but  its  unique  advantages  should  be  used
as  a  supplement  to  electronic  integration  to  solve  problems
that  electronic  integration  cannot  solve  in  the  More-than-
Moore era.
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