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Innovative techniques play important roles in photonic structure design and complex
optical data analysis. As a branch of machine learning, deep learning can automatically
reveal the inherent connections behind the data by using hierarchically structured layers,
which has found broad applications in photonics. In this paper, we review the recent
advances of deep learning for the photonic structure design and optical data analysis,
which is based on the two major learning paradigms of supervised learning and
unsupervised learning. In addition, the optical neural networks with high parallelism
and low energy consuming are also highlighted as novel computing architectures. The
challenges and perspectives of this flourishing research field are discussed.
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1 INTRODUCTION

Over the past few decades, photonics, as an important field of fundamental research, has been
penetrating into various domains, such as life science and information technology (Vukusic and
Sambles, 2003; Bigio and Sergio, 2016; Ravì et al., 2016). In particular, the advances of photonic
devices, optical imaging and spectroscopy techniques have further accelerated the wide
applications of photonics (Török and Kao, 2007; Ntziachristos, 2010; Dong et al., 2014;
Jiang et al., 2021). For example, the creation of metasurfaces/metamaterials have promoted
the development of holography and superlenses (Zhang and Liu, 2008; Yoon et al., 2018), while
the optical spectroscopy and imaging have deep utility in medical diagnosis (Chan and Siegel,
2019; Lundervoldab and Lundervoldacd, 2019) and biological study (Török and Kao, 2007).
However, for sophisticated photonic devices, the initial design relies on the electromagnetic
modelling, which is largely determined by human experience gained from the physical intuition
and previous (Ma W. et al., 2021). The specific structure parameters are determined by means of
trial-and-error, and their parametric space is limited by simulation power and time. Besides, the
optical data generated from optical measurements are becoming more and more complicated.
For instance, when applying optical spectroscopy to characterize various analytes (e.g.,
malignant tumor tissue and bacterial pathogens) in complex biological environments, it is
challenging to extract the fingerprint due to the large spectral overlap from the common bonds in
the analytes (Rickard et al., 2020; Fang et al., 2021). The traditional analysis methods are mainly
based on the physical intuition and prior-experiences, which are time-consuming and susceptive
to human error.
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Recently, the booming field of artificial intelligence has
accelerated the pace of technological progresses (Goodfellow
et al., 2016). Particularly, deep learning, as a data-driven
method, can automatically reveal the inherent connections
behind the data by using hierarchically structured layers. It
has been widely exploited in the field of computer visions
(Luongo et al., 2021), image analysis (Barbastathis et al.,
2019), robotic controls (Abbeel et al., 2010), driverless cars
(Karmakar et al., 2021) and language translations (Wu et al.,
2016; Popel et al., 2020). In the photonics applications, deep
learning provides a new perspective for device design and optical
data analysis (Anjit et al., 2021). It is capable of searching the
nonlinear physical correlations, such as the relationship between
photonic structures and their electromagnetic response (Wiecha
and Muskens, 2019; Li et al., 2020). The cross-discipline of deep
learning and photonics enables researchers to design photonic
devices and decode optical data without explicitly modeling the
underlying physical processes or manually manipulating the
models (Chen et al., 2020). Particular areas of success include
the materials and structures design (Malkiel et al., 2018; Ma et al.,
2019), optical spectroscopy and image analysis (Ghosh et al.,
2019; Moen et al., 2019), data storage (Rivenson et al., 2019; Liao
et al., 2019), and optical communications (Khan et al., 2019), as
shown in Figure 1. The deep neural networks used for these
applications are mainly tested and trained in electronic
computing systems. Compared with the conventional
electronic platforms, the photonic systems have attracted
increasing attention due to the low energy consuming,
multiple interconnections and high parallelism (Sui et al.,
2020; Goi et al., 2021). Recently, various optical neural
network (ONN) architectures have been used for high-speed

data analysis, such as optical interferometric neural network
(Shen et al., 2017) and diffractive optical neural network (Lin
et al., 2018).

In this article, we focus on the merging of photonics and deep
learning for the optical structures design and data analysis. In
Section 2, we introduce the typical deep learning algorithms,
including supervised learning and unsupervised learning. In
Section 3, we present the deep learning-assisted photonic
structure design and optical data analysis. The optical neural
networks are highlighted as novel computing architectures in
Section 4. In Section 5, we discuss the outlook of this flourishing
field accompanied with a short conclusion.

2 PRINCIPLES OF TYPICAL NEURAL
NETWORKS

In this section, we will introduce several typical deep learning
algorithms, and elucidate their working principles for the cross-
discipline optical applications. Basically, the algorithms can be
divided into supervised learning and unsupervised learning.

In supervised learning, the input training data are
accompanied with “correct answer” labels. During the training
process, supervised learning compares the predicted results with
the ground-true labels in the datasets, and constantly optimizes
the network to achieve desired performance. Specifically, it can
learn the correlations between photonic structures and optical
properties, so as to perform special optical functions. Supervised
learning includes multiple artificial neural networks (LeCun et al.,
2015), such as multilayer perceptron (MLP), convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), as
shown in Figures 2A–C.

2.1 Multilayer Perceptron
MLP is a fundamental model from which all other artificial neural
networks are developed, so it is usually considered as the beginning
of deep learning. MLP is composed of a series of hidden layers,
which are the link between the inputs and outputs. The neurons in
the upper and lower layers are connected to each other through a
nonlinear activation function. This model determines a large
number of optimizable parameters, which provides high
capability to learn the complex and nonlinear relationships in
the optical data. In a typical MLP training process, we need to pre-
define a cost function by the variance or cross entropy between the
predicted and actual values. During the optimization, the weights
of the neurons are adjusted by the back propagation algorithm to
minimize the cost function. Later, the target optical functions such
as the scattering spectra are imported into the network, and the
predicted photonic structures are obtained (Wu et al., 2021).
Intuitively, with the increase of hidden layers in MLP, the
neural network learns more features and realizes higher training
accuracy at the cost of training time. Noting that too many hidden
layers are prone to cause over-fitting results, thus the appropriate
hidden-layer numbers are preferred. To solve the universally non-
uniqueness problems, the tandem network model is proposed by
cascading an inverse-design network with a forward-modeling
network (Liu et al., 2018).

FIGURE 1 | Applications of the deep learning in optical structure design
and data analysis.
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2.2 Convolutional Neural Networks
CNNs are specially designed for image classification (Li et al., 2014;
Guo et al., 2017) and recognition (Hijazi et al., 2015; Fu et al., 2017),
and their performance on special tasks such as image recognition can
even surpass humans (Lundervoldab and Lundervoldacd, 2019). The
reason why CNNs can effectively process high-dimensional data such
as images, is that they can automatically learn the features from large-
scale data and generalize them to the same type of unknown data.
Generally, CNNs consist of four parts: 1) The convolution layers
extract the features of the input images; 2) The activation layers realize
nonlinear mapping; 3) The pooling layers aggregate features in
different regions to reduce the data dimension; 4) The full
connection layer outputs the final classification results. The
convolution layers usually contain several convolution kernels,
which are also known as filters, and they sequentially extract the
features of the input image just like the human brain. In the past years,
various derivative networks, such as LeNet (Lecun et al., 1998),
AlexNet (Krizhevsky et al., 2012), ZFNet (Zeiler and Fergus, 2014),
VGG (Simonyan and Zisserman, 2014), GoogleNet (Szegedy et al.,
2015), ResNet (He et al., 2016) and SENet (Hu et al., 2018) are
developed on the basic components ofCNNs. The network accuracy is
improved by manipulating the layer numbers and connection modes.
CNNs exhibit two important characteristics: First, the neurons in the
neighboring layers are connected locally, which is different from the
fully connected neurons in MLP. Second, the weight array in a region
is shared to reduce the number of parameters, and it accelerates the
convergence of network. Since the complexity of themodel is reduced,
the over-fitting problem can be released. Theoretically, CNNs are
prominent to solve problems relevant to the images, such as optical
illusion custom and super-resolution imaging. The network can
automatically extract image features, including color, texture, shape
and topology, which increases the robustness and operation efficiency
in image processing. Recently, CNNs have been applied in photonic
crystal (Asano andNoda, 2018) design. By optimizing the positions of
air holes in a base nanocavity with CNNs, the extremely high Q-factor
of 1.58 × 109 was successfully obtained.

2.3 Recurrent Neural Networks
Just like human beings can better understand the world by virtue
of their memory effects, RNNs have certain memory for the past
processed information. The output of RNNs is related not only to
the current input, but also to the previous inputs. Thus, RNNs are
prevalently used to simulate continuous sequential optical signal
in the time domain. Since the networks memorize all information
in the same way, they usually occupy a lot of memory and reduce
the computational efficiency. The long short-term memory
network, as a derivative RNNs, can selectively memorize the
important information and forget the unimportant information
by controlling the gate states (Ochreiter and Schmidhuber, 1997).
Moreover, it solves the problem of gradient disappearance and
gradient explosion for the long sequence training.

Unsupervised learning is fed with unlabeled training data,
which denotes having no standard answer in the training process.
Consequently, unsupervised systems are capable of discovering
new patterns in the training datasets, some of which can even go
beyond prior knowledge and scientific intuition. Moreover, the
unsupervised learning focuses on extracting important features
from data, rather than directly predicting the optical response,
thus it does not need massive data to train the network. In this
way, it removes the burden of creating massive labeled data.

2.4 Generative Adversarial Network
GAN is proposed by Goodfellow et al. (2014) to solve
unsupervised learning problems. It contains two independent
networks as shown in Figure 2D, which fight against each other
to complete a zero-sum game. The discriminator network
distinguishes whether the input structure data is real or fake.
The generator network generates fake structure data by selecting
and combining elements in the latent space with superposed
noise. In the training process, the discriminator receives data from
both the real and fake structure data, and judges which category it
belongs to. Specifically, if the discriminator is right, adjust the
generator to make the fake structure data more real to deceive

FIGURE 2 | Schematic illustration of typical deep learning models. (A) Multilayer perceptron, (B) Convolutional neural networks, (C) Recurrent neural networks, (D)
Generative adversarial network.
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the discriminator; otherwise, adjust the discriminator to avoid
making similar mistakes again. The continuous training will
reach a balanced state, and a generator with high quality and
discriminator with strong judgment ability is achieved. After
training, the generator is capable of producing target photonic
structures quickly, and the discriminator can accurately judge
whether a new input structure matches the target optical
response or not.

The typical characteristics of deep learning algorithms
including MLP, CNNs, RNNs and generative model are
summarized in Table 1. Note that MLP and CNNs have been
widely used in the photonic devices design and optical data
analysis. Further research of RNNs and generation models for
photonics applications needs to be explored.

In the inverse design of photonic devices, there have been
various optimization algorithms including the classic machine
learning approaches (e.g., regularization algorithms, ensemble
algorithms, or decision tree algorithms) and the traditional
optimization approaches (e.g. topology optimization, adjoint
methods or genetic algorithms) to efficiently search the target in
large design space. By involving more data, deep learning can
usually improve the computing accuracy efficiently, but this
method has almost no effect on the conventional machine
learning approaches. Moreover, the transfer learning technology
enables the well-trained deep learning models to be applied to
other scenarios, making it adaptable and easy to transform. In
contrast, machine learning can only be applied to a single scene and
is weak in transportability. Traditional optimization approaches
search the maximal solution iteratively, which modify the
searching strategy according to the intermediate results. This
strategy consumes huge computational resources and is difficult
to be applied for complex designs. People interested in these
algorithms can refer to the recent review for more information
(Ma L. et al., 2021).

3 PHOTONIC APPLICATIONS OF DEEP
LEARNING

In this section, we briefly introduce the deep learning-based
applications from photonic structure design to data analysis.

3.1 Deep Learning for Photonic Structure
Design
In the past decades, the photonics have developed rapidly, and
show a strong capability in tailoring light-matter interactions.
Recently, this field has been revolutionized by the data-driven
deep learning method. The method can search for the intricate
relationship between the photonic structures and the optical
responses after training on large samples, which circumvents
the time-consuming iterative numerical simulations in photonic
structure designs. Moreover, unlike traditional optimization
algorithms, which requires repeated iterative training for each
computation, data collection and network training for deep
learning are only one-time costs. Such data-driven model can
serve as a powerful tool for the on-demand design of photonic
devices.

3.1.1 Inverse Design of Optical Nanoparticles
Core-shell nanoparticles can exhibit intriguing phenomena, such
as multifrequency superscattering (Qin et al., 2021), directional
scattering and Fano-like resonance, but its higher degree-of-
freedom makes designing difficult. Peurifoy et al. (2018)
applied MLP to predict the scattering cross-section of a
nanoparticle with silicon dioxide/titanium dioxide multilayered
structures, as shown in Figure 3A. In this work, MLP was trained
on 50,000 scattering cross-section spectra obtained by the transfer
matrix method. They achieved dual functions of forward
modeling and inverse design. Specifically, MLP was used to
approximate the scattering cross section of the core-shell
nanoparticle for the input layer parameters. Besides, with the
target scattering spectra, MLP would expeditiously output the
corresponding structural parameters of the nanoparticle. The
results show that MLP is able to calculate spectra accurately
even the input structure goes beyond the training data. It suggests
that MLP is not just simply fitting the data, but instead
discovering some underlying patterns and structures of the
input and output data. Note that this model architecture can
not achieve the inverse design of materials, and there are certain
restrictions on design freedom. So et al. (2019) took a step
forward and inversely designed optical material and structural
thickness simultaneously by realizing the classification and
regression at the same time, as shown in Figure 3B. They

TABLE 1 | Comparison of deep learning algorithms.

Algorithms Unique features Advantages Disadvantages Optical applications

Multilayer
perceptron

Full connected neurons, simple
structure

High reliability, low latency Difficult to handle high
dimensional data

Nanoparticle simulation(Peurifoy etal., 2018), self-
adaptive invisibility cloak(Qian et al., 2020), 3D vectorial
holography(Ren et al., 2020)

Convolutional
neural networks

Local receptive fields, shared
weights

High dimensional data
processing

Ignore global and local
correlations

Spectra analysis(Fan et al., 2019), optical
communications(Fan et al., 2020), data storage(Wiecha e

tal., 2019), optical image processing(Buggenthin et al.,

2017)

Recurrent neural
networks

Intra-layer neurons connected,
shared parameters at different
cycles

Memorable, sequential
information processing

Long-term dependencies,
gradient disappearance

Optical character recognition(Singh, 2013), transient
electromagnetic modeling(Sharmaand and Zhang, 2005)

Generative model With two different networks,
gradient updated from discriminator
rather than training data

Fast convergence speed,
incomplete datasets
processing

Unsuitable for discrete
data, error-prone

Metallic metamolecules design(Liu et al., 2020)
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used classification to determine what materials were used for each
layer, and regression to predict the thickness. The loss function
was defined as weighted average of spectrum and design losses.
The spectrum loss was calculated by mean squared error of target
spectra and predicted response by deep learning, and the design
loss was weighted average of material and structural losses. As a
result, the material and thickness of the core-shell nanoparticle
are designed simultaneously and accurately.

3.1.2 Inverse Design of Metasurface
Over the past 2 decades, the explorations of metasurfaces have led
to the discovery of exotic light–matter interactions, such as
anomalous deflection (Yu and Capasso, 2014; Wang et al.,
2018), asymmetric polarization conversion (Schwanecke et al.,
2008; Pfeiffer et al., 2014) and wave-front shaping (Pu et al., 2015;
Zhang et al., 2017; Raeker and Grbic, 2019).

From individual nanoparticles to collective meta-atoms
metasurfaces, the structural degree of freedom and flexibility
are increased drastically. Liu et al. (2020) proposed a hybrid
framework, i.e. compositional pattern-producing networks
(CPPN) and cooperative coevolution (CC) algorithm, to
design metamolecules with significantly increased training
efficiency, as shown in Figure 3C. The CPPN as a generative
network composes high-quality nanostructure patterns, and CC
divides the target metamolecule into the independent meta-
atoms. The metallic metamolecules for arbitrary manipulation
of the polarization and wavefront of light were demonstrated in

the hybrid framework. This work provides a promising way to
automatically construct the large-scale metasurfaces with high
efficiency. Note that the proposed framework is assumed with
weak-coupled meta-atoms, the strong coupling and nonlinear
optical effects are expected to be involved for the future
development. The nature of three-dimensional (3D) vector
optical field is crucial to understand the light-matter
interaction, which plays a significant role in imaging,
holographic optical trapping and high-capacity data storage.
Hence, using deep learning to manipulate the complex 3D
vector optical fields in photonic structures such as spin and
orbital momentum, topology and anisotropic vector fields are
ready to be explored. For instance, Ren et al. (2020) designed an
optical vectorial hologram of a 3D-kangaroo projection by MLP,
as shown in Figure 3E. The phase hologram and a 2D vector-field
distribution were served as state vector and label vector,
respectively, and they were used to train the network model to
reconstruct a stereo optical image. This work achieves the lensless
reconstruction of a 3D-image with an ultra-wide viewing angle of
94°and a high diffraction efficiency of 78%, which shows great
potentials in multiplexed displays and encryption.

Following the pioneering works on the static manipulation of
optical field, there is an increasing interest to dynamically
manipulate the optical filed, such as the design of invisibility
cloak. The invisibility cloak is an intriguing device with great
applications in various fields, however, the conventional cloak
could not fit into the ever-changing environment. Qian et al.

FIGURE 3 | Photonic designs enabled by deep learning models. (A) Nanophotonic particle scattering simulation. Reproduced from Peurifoy et al. (2018) with
permission from American Association for the Advancement of Science. (B) Simultaneous design of material and structure of nanosphere particles. Reproduced from So
et al. (2019) with permission from American Chemical Society. (C) Inverse design of metallic metamolecules. Reproduced from Liu et al. (2020) with permission from the
WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim. (D) Self-adaptive invisibility cloak. Reproduced fromQian et al. (2020) with permission from Springer Nature. (E)
Optical vectorial hologram design of a 3D-kangaroo projection. Reproduced from Ren et al. (2020) with permission from American Association for the Advancement of
Science.
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(2020) used MLP to design a self-adaptive cloak with millisecond
response time to the dynamic incident wave and surrounding
environment, as shown in Figure 3D. To this end, the optical
response of each element inside the metasurface was
independently tuned by feeding different bias voltages across a
loaded varactor diode. With deep learning, the integrated system
could exploit the intricate relationship between incident waves,
reflection spectra and bias voltages for each individual meta-
atom. Thereafter, the proposed intelligent cloak with bandwidth
of 6.7–9.2 GHz was realized. The concept of demonstration can
be potentially extended to the visible spectra with ingredients of
gate-tunable conducting oxide (e.g. indium tin oxide) (Huang
et al., 2016) or phase-change materials (e.g., vanadium dioxide)
(Cormier et al., 2017).

Deep learning technology exhibits the huge potential in
photonic structure design, material optimization, and even the
optimization of the entire optical system. Besides the
aforementioned work, it has been used for various intricate
devices design, such as multi-mode converters (Liu et al.,
2019; Zheng et al., 2021), metagratings (Inampudi and
Mosallaei, 2018; Jiang et al., 2019), chiral metamaterials (Ma
et al., 2018) and photonic crystals (Hao et al., 2019).

3.2 Deep Learning for Optical Data Analysis
The optical techniques have been widely implemented in various
fields. Large optical data will be generated when applying optical
spectroscopy and imaging to medical diagnosis, information
storage and optical communication. The conventional analysis
of optical data is often based on the prior experiences and physical
intuition. Yet it is time-consuming and error-prone when
processing huge amount of the complex optical data, such as
optical spectra and images. To tackle this challenge, various deep
neural networks have been exploited. In the following part, some
important work of deep learning in optical data analysis are
introduced.

3.2.1 Complex Spectra Analysis
The optical spectroscopy is the study of interaction between matter
and light radiation as a function of the wavelength or frequency.
From the spectral analysis, the chemical compositions and relative
contents of the target analytes can be deduced. Deep learning
provides an alternative way for a better extraction of the encoded
information from the massive and complex spectra. For example,
Fan et al. (2019) implemented a CNN to analyze the Raman spectra
and identify the components of mixtures, as shown in Figure 4A.
The training datasets contained the spectra of 94 ternary mixtures of
methanol, acetonitrile and distilled water. The identification
accuracy of CNN was up to 99.9% and the detected volume
percentage of methanol was as low as 4%, which went beyond
the conventional models, such as k-nearest neighbor. The proposed
component identification algorithm is suitable for complex mixtures
sensing and is potential for rapid disease diagnosis.

The optical memory provides an intriguing solution for “big
data” due to the high information capacity and longevity.
However, the diffraction limit of light inevitably restricts the
bit density in optical information storage. Wiecha et al. (2019)
encoded multiple bits of information in the subwavelength

dielectric nanostructures by using a CNN and MLP, as
illustrated in Figure 4B. The scattering spectra were identified
to extract the bit sequence. In the network training, the scattering
spectra data propagated forward through the network, and the
outputs of highly activated neurons indicated the encoded bit
sequence (Figure 4C). In this way, they efficiently improved the
bit density up to 9-bits with quasi-error-free readout accuracy,
which was of 40% higher information density than that of the
Blu-ray. Furthermore, they simplified the readout process by
probing few wavelengths of nanostructure scattering, i.e., the
scattered RGB values of the dark-field microscopy images. This
study provides a promising solution for high-density optical
information storage based on the planar nanostructures.

3.2.2 Nonlinear Signal Processing
The long-haul optical communications face the fundamental
bottlenecks, such as the fiber Kerr nonlinearity and chromatic
dispersion. Deep learning, as a powerful tool, has been applied to
fiber nonlinearity compensation in optical communications. Fan
et al. (2020) utilized the deep learning-based digital back-
propagation (DBP) architecture for nonlinear optical signal
processing, as shown in Figure 4E. For a single-channel 28-
GBaud 16-quadrature amplitude modulation system, the
developed method demonstrated a 0.9-dB quality factor gain.
This architecture was further extended to polarization-division-
multiplexed (PDM) and wavelength-division-multiplexed
(WDM). The quality factor gain of modified DBP were 0.6
and 0.25 dB for the single channel PDM and WDM system,
respectively. This work shows that deep learning provides an
effective tool for theoretical understanding of the nonlinear fiber
transmission.

In addition, deep learning has promoted the development of
intelligent systems in fiber optic communication, such as eye map
analyzers. Wang et al. (2017) proposed an intelligent eye-diagram
analyzer based on CNNs to achieve the modulation format
recognition and optical signal-to-noise rate estimation in
optical communications. Four commonly used optical signals
by the simulations were obtained, which were then detected by
the photodetectors. They collected 6,400 eye-diagram images
from the oscilloscope as training sets. Each image in the
training datasets had a 20-bits label vector. During the
training process, CNNs gradually extracted the effective
features of the input images and the back-propagation
algorithm was exploited to optimize the kernel parameters.
Consequently, the estimation accuracy nearly reached 100%.

3.2.3 Optical Images Processing
Optical imaging technology, such as fluorescence microscopy and
super resolution imaging, have been considered as powerful tools
in various areas. For example, image classification has been
widely used for the medical image recognition. Buggenthin
et al. (2017) established a classifier by combining CNNs and
RNNs for directly identifying differentiated cells. With massive
bright-field images input, the convolutional layers extracted the
local features and the concatenation layer combined the highest-
level spatial features with cell displacement in differentiation
process. The extracted features were fed into the RNNs to
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exploit the temporal information of the single-cell tracks for cells
lineage prediction, as shown in Figure 4D. They achieved the
label-free identification of cells with differentially expressed
lineage-specifying genes, and the lineage choice could be
detected up to three generations. The model allows for
analyzing the cell differentiation processes with high
robustness and rapid prediction.

In the fluorescence microscopy, the observable phenomena of
fluorescence microscopy is limited by the chemistry of
fluorophores, and the maximum photon exposure that the
sample can withstand. The cross-discipline of deep learning
and bio-imaging provides an opportunity to overcome this
tackle. For instance, Weigert et al. (2018) proposed a content-
aware image restoration (CARE) method to restore the
microscopy images with enhanced performance. In Figure 4F,
the CNN architecture was trained on the well-registered pairs of
images: a low signal-to-noise ratio (SNR) image as input and high
SNR one as output. The CARE networks could maintain the
microscopy images of high SNR even if the 60-fold light dosage
was decreased. Besides, the isotropic resolution could be realized
with the tenfold fewer axial slices. Impressively, they achieved the
imaging speed by CARE of 20-times faster than that of the state-
of-the-art reconstruction methods. The proposed CARE
networks can extend the range of biological phenomena

observable by microscopy, and can be automatically adapted
to various image contents.

4 OPTICAL NEURAL NETWORKS

Integrated circuit chip is the mainstream hardware carrier, such
as graphical processing units, central processing units and
application-specific integrated circuits (Misra and Saha, 2010).
However, the conventional electronic computing systems on von
Nemumann architectures are insufficient for training and testing
neural networks (Neumann, 2012). It is because that they separate
the data space from the program space, and the tidal data load is
generated between the computing unit and the memory. Photons
exhibit the unique abilities of realizing multiple interconnections
and simultaneously parallel calculations at the speed of light (Xu
et al., 2021). Thus, the optical neural networks (ONNs)
constructed by the photonic devices, have opened a new road
to achieving orders-of-magnitude improvements in both
computation speed and energy consumption over the existing
solutions (Cardenas et al., 2009; Yang et al., 2013). The ONNs
have shown the potential for addressing the ever-growing
demand of high-speed data analysis in complex
applications, such as medical diagnosis, autonomous

FIGURE 4 | Deep learning for optical data analysis. (A)Working principle of CNN used in spectral analysis. Reproduced from Fan et al. (2019) with permission from
the Royal Society of Chemistry. (B) Schematic of 4-bit nanostructure geometry. (C) Illustration of CNN applied for information storage. Reproduced from Wiecha et al.
(2019) with permission from Springer Nature. (D) Schematic of CNN used for classification of differentiated cells. Reproduced from Buggenthin et al. (2017) with
permission from Springer Nature. (E) DNN-based DBP architecture. FOE: frequency-offset estimation, CPE: carrier-phase estimation. Reproduced from Fan et al.
(2020) with permission from Springer Nature. (F) The proposed CARE for image restoration. Reproduced from Weigert et al. (2018) with permission from Springer
Nature.
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driving, and high-performance computing, as shown in
Figure 5. The platforms to achieving ONNs mainly include
photonic circuits and optical diffractive layers as discussed
following.

Recently, Shen et al. (2017) experimentally demonstrated an
ONN by using a cascaded array of 56 programmable Mach-
Zehnder interferometers on an integrated chip. Theoretically,
they estimated that the proposed ONN could achieve 1011 N-
dimension matrix-vector multiplications per second, which was
two orders of magnitude faster than the state-of-the-art electronic
devices. To test the performance, they verified the utility in vowel
recognition with measured accuracy of 76.7%. They claimed that
the system could achieve a correctness of 90% with calibrations to
reduce the thermal cross-talk, which was comparable to
conventional 64-bits computer with accuracy of 91.7%. Noted
that the optical nonlinearity unit by a saturable absorber was only
modelled on a computer, and the power dissipation of data
movement was significant in the current ONNs. There is still
a long way to exploring the optical interconnects and optical
computing units to realize the supremacy of ONNs.

In addition to the photonic integrated circuit, the physical
diffractive layers also provides a method for implementing neural
networks algorithms. The optical diffraction of planar structures
is mathematically a convolutional processing of input modulated

fields and propagation functions. Thus the diffractive layers can
be intuitively used to train ONNs. Lin et al. (2018) pioneered the
study of all-optical diffractive deep neural network (D2NN)
architectures. The learning framework was based on multiple
layers of 3D-printed diffractive surfaces, which was designed
through a computer. They demonstrated that the trained
D2NN could achieve the automated classification of
handwritten digits (accuracy of 93.39%) and complex images
datasets (Fashion MNIST, accuracy of 86.6%) with the 10
diffractive layers and 0.4 million neurons. The proposed
D2NN shows the ability to operates at the speed of light, and
it can be easily extended to billions of neurons and connections
(Lin et al., 2018).

5 OUTLOOK AND CONCLUSION

Deep learning usually needs large amounts of data support.
However, it is impractical to collect massive databases by
either physical simulations or experimental measurements.
There are mainly two approaches to solving this problem.
First, transfer learning allows migrating the knowledge of
neural network trained from a certain physical process to
other similar cases (Torrey and Shavlik, 2010). Specifically, the

FIGURE 5 | Development of photonic chip computing power and their representative application.

FIGURE 6 | An conceived user-friendly software system for photonic structure design.
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neural network pre-trained on high-quality datasets shows strong
generalization ability, which can solve new problems with small
datasets. Thus the data collection can be substantially reduced.
Second, the burden of massive data collection can also be relieved
by combining deep learning model with basic physical rules. For
example, deep learning can be used as an intermediate step to
effectively solve the Maxwell’s equations (So et al., 2020), rather
than to directly find a mapping of optical structures and
properties.

In the past few years, intelligent photonics has made great
progress benefited from the interdisciplinary collaborations from
researchers in the field of computer science and physical optics. To
relieve the researchers from tedious and complex algorithm
programming, a user-friendly system is highly on demand. This
system should basically contain two parts: open-source resources
and user-friendly interface, as shown in Figure 6. Inspired by
computer-science community, researchers are encouraged to
share their datasets and neural networks to establish a
comprehensive optical open-source community. Furthermore, the
abundant open-source networks enable transfer learning to solve the
various problems. The basic idea is to migrate data characteristics
from related domains to improve the learning effect of the target
tasks. Thereafter, when a deep learning network is needed to train
and solve a specific photonic problem, we can directly call the
relative database and well-trained neural networks from the open-
source resources, which avoids the ab initio building of data
collection.

In the context of photonic structures, people are not only
interested in some specific designs and their performances, but
also in the general mechanism or principle that leads to the
functionalities. The neural networks are considered as black-box
models, which fit the training sets to directly provide the expected
results. There is relentless effort for researchers to study the
interpretability of neural networks. For instance, Zhou et al.
(2016) proved that by using global average pooling, CNNs

could retain remarkable localization ability, which exposed the
implicit attention of CNNs on image-level labels. The remarkable
localization ability are probably transferred to physical
interpretability of the photonic devices design.

In this review, we have surveyed the recent development of
deep learning in the field of photonics, including photonic
structure design and optical data analysis. Optical neural
networks are also emerging to reform the conventional
electronic-circuit architecture for deep learning with high
computational power and low energy consumption. We have
witnessed the interactions between the deep learning and
photonics, and look forward to more exciting works in the
interdisciplinary field.
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