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Whispering gallery mode (WGM) microcavities provide increasing opportunities for precision measurement due
to their ultrahigh sensitivity, compact size, and fast response. However, the conventional WGM sensors rely on
monitoring the changes of a single mode, and the abundant sensing information in WGM transmission spectra
has not been fully utilized. Here, empowered by machine learning (ML), we propose and demonstrate an ergodic
spectra sensing method in an optofluidic microcavity for high-precision pressure measurement. The developed
ML method realizes the analysis of the full features of optical spectra. The prediction accuracy of 99.97% is
obtained with the average error as low as 0.32 kPa in the pressure range of 100 kPa via the training and testing
stages. We further achieve the real-time readout of arbitrary unknown pressure within the range of measurement,
and a prediction accuracy of 99.51% is obtained. Moreover, we demonstrate that the ergodic spectra sensing
accuracy is ∼11.5% higher than that of simply extracting resonating modes’ wavelength. With the high sensitivity
and prediction accuracy, this work opens up a new avenue for integrated intelligent optical sensing. © 2022

Chinese Laser Press

https://doi.org/10.1364/PRJ.464133

1. INTRODUCTION

Optical microcavities have attracted increasing attention in
high-precision optical detection with the merits of ultrahigh
sensitivity, miniature size, and fast response [1–9]. In particular,
whispering gallery mode (WGM) resonators with high quality
factors (Q-factors) and small mode volume can prominently
enhance the light–matter interaction, resulting in a significant
improvement of detection sensitivity [10–22]. For example,
WGM resonators have achieved the detection of single mole-
cules and even single ions through surface plasmonic enhance-
ment, laser mode locking, and photo-spring effect [23–28].
Despite their superior sensitivities, the conventional optical
platforms rely on monitoring a single particular mode, which
significantly limits the dynamic detection range. In contrast,
the multiple resonant modes in a WGM microcavity exhibit

different responses to a target, providing abundant sensing in-
formation. By merging these sensing modalities, the multimode
detection has a larger dynamic range with much less uncertainty
than that of single-mode sensing [29].

However, the conventional WGM transmission spectra tend
to exhibit high spectral density; for example, within the 1 nm
spectral range, the resonant mode number of a microbubble
resonator (MBR) is up to 305 [29]. It is a great challenge to
manually analyze the massive resonant modes and establish the
relationship between the responses of various WGMs and un-
known targets. Machine learning (ML) is able to identify the
entire features of a full spectrum on its own. As a data-driven
analytical technology, it can automatically search for valid in-
formation from large data sets to reveal the mechanisms behind
the data, thereby establishing a mapping relationship between
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the input data and unknown target parameters [30–34].
Recently, ML has been adopted in multimode sensing based
on optical microcavities [35–37]. For example, by combining
the artificial neural network model, Lu et al. have achieved the
detection of voltage by extracting the transmission depth of
multimodes, and the detection limit was 6.7% lower than that
of single-mode sensing [35]. Indeed, the other features of mul-
timode spectra, such as resonant wavelength, resonant mode
number, mode spacing, and mode linewidth, can also be con-
voluted with effective sensing information. The extraction of an
overall pattern of spectra is able to fully exploit valid informa-
tion, which provides increasing opportunities for high-accuracy
detection.

In this work, we propose an ergodic spectra sensing method
in a WGM resonator empowered via ML. It considers the
global features of spectra, which enables the full use of spectral
information by combining the ML method, thereby improving
sensitivity. The sensing systems realize the high-precision read-
out of the actual value of unknown target parameters. As a
proof of principle, an internal aerostatic pressure sensing experi-
ment is carried out by using a high Q-factor (∼3.12 × 107)
MBR. A fully connected multilayer perceptron (MLP) neural
network is selected to derive the spectral features to achieve the
precise readout of actual pressure via the training and testing
stages. The obtained prediction accuracy is 99.97%, while the
average error is 0.32 kPa in the pressure range of 100 kPa.
Within the measurement range, the prediction of arbitrary tar-
get pressure with an accuracy of 99.51% is achieved. Further-
more, the prediction accuracy of ergodic spectra sensing is
11.51% higher than that of simply extracting resonating
modes’ wavelength. This work exhibits the ability of high-
precision measurement and provides more degrees of freedom,
which offers the potential for multiparameter sensing in a single
platform.

2. FABRICATION AND CHARACTERIZATION

Figure 1(a) shows the experimental setup for internal aerostatic
pressure measurement. A tunable laser at ∼780 nm is adopted
to excite the resonant modes of MBR via a tapered fiber. The
wavelength of the laser is finely scanned by a 50 Hz triangular
wave generated from an arbitrary function generator. A fiber
polarization controller is used to regulate the polarization state
of the input light to promise optimal coupling efficiency. The
pressure is controlled by the regulator, while a gauge is used to
record the applied pressure. Note that one of the ports of the
MBR is sealed by ultraviolet glue and the other is connected to
a compressed air source. To ensure the stability of the coupling
system, the MBR is physically attached to the tapered fiber.
The transmission spectra are recorded through a low-noise
photodetector in real time as the input data set for the neural
network and are monitored by an oscilloscope. Figure 1(b)
shows the entire process of sensing signal analysis. The WGM
spectra manifest discriminative characteristics at different pres-
sures, which means that the pressure uniquely determines the
entire pattern of the transmission spectrum. Hence, the full
transmission spectra are collected as raw data and fed into
the neural network model. The actual pressure can be directly
read out via the training and testing stages.

The MBR is selected as the experimental platform due to
the dense WGM spectra and inherent microfluidic channel.
We fabricate the MBR using a silica hollow capillary by the
“heat-and-expand” method [15,38]. First, the diameter of a
silica capillary is tapered to ∼30 μm through a heating and
pulling process using a hydrogen flame, as shown in the left
panel of Fig. 2(a). Then, the capillary is further heated and
gradually expanded into a bubble, as shown in the right panel
of Fig. 2(a). The Q-factor of ∼3.12 × 107 is obtained via
Lorentzian fitting [Fig. 2(b)]. The rich spectral features are
demonstrated by measuring transmission spectra when the
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Fig. 1. Schematic of ergodic spectra sensing for pressure measurement, including (a) the experimental setup and (b) data analysis process. VOA,
variable optical attenuator; FPC, fiber polarization controller; PD, photodetector; OSC, oscilloscope; AFG, arbitrary function generator.

2344 Vol. 10, No. 10 / October 2022 / Photonics Research Research Article



laser wavelength is scanned from 778 to 780 nm, as displayed
in Fig. 2(c). The number of prominent resonant modes of 324
is automatically probed via the “find-peaks” algorithm in
MATLAB with the threshold of 0.13. Figure 2(d) shows the
long-term stability of the MBR, and the measured maximum
wavelength shift is ∼0.414 pm. We further introduce the Allan
variance to reflect the intrinsic noise of the system, as shown in
the inset of Fig. 2(d). It can be seen that the Allan variance
decreases to a minimum value at ∼8 s and then rises, which
is mainly determined by the thermal noise of the laser source
and environment. In addition, the aerostatic pressure sensing
ability of the MBR is demonstrated by tracking the resonant
wavelength changes of a single mode. The wavelength shift is
mainly contributed by the stress-induced refractive index
changes and size expansion [39]. The pressure sensitivity of
0.55 pm/kPa is attained via linear fitting, as shown in
Fig. 2(e). Figure 2(f ) shows the real-time wavelength shift of
a single mode by continuously increasing and decreasing the
aerostatic pressure. The average response time of pressurization
and decompression process is ∼1.052 s and ∼0.485 s, respec-
tively. The resonant wavelength restores to the original position
when the pressure returns to the initial state, showing the good
reversibility of the MBR sensors.

3. ERGODIC SPECTRA SENSING METHOD
BASED ON ML

The database is composed of transmission spectra, which is di-
vided into training and testing data sets [Fig. 3(a)]. Each spec-
trum is labeled with corresponding pressure and converted into
a matrix [Fig. 3(b)]. Next, these matrices are fed into a fully
connected three-layer perceptron neural network to estimate
the target aerostatic pressure [Fig. 3(c)]. The neurons of the

input layer comprise n independent variables, i.e., the raw data
of a full spectrum. Then, the full spectrum is transmitted to the
hidden layer with k neurons. Subsequently, the information is
transferred from the hidden layer to the output layer, and the
value of the neuron in the output layer is determined by the
following equation:

y �
Xk
i�1

wiF
�
w0 �

Xn
j�1

xiwij

�
, (1)

where w0 is the bias, wi and wij are the weight factor of the
input layer and output layer of links, respectively, xi is the ith
input data, and F�·� is the nonlinear activation function.

The detailed implementation process is as follows. First, the
transmission spectra at different pressures should be collected as
training data sets before the actual measurement. Here, the
training data sets consist of paired input spectra and output
labels. Then, the actual measurement is carried out and the
extra transmission spectra are recorded as testing data sets.
Next, the training data sets are fed into the neural network,
and the model is trained through the backpropagation algo-
rithm, which regulates the weight based on the gradient descent
method [40]. After reaching the training goal, a high-quality
MLP neural network is obtained. Meanwhile, the nonlinear
mapping relationship between the input transmission spectra
and the output target parameters is established. Finally, the test-
ing data sets are input into the trained network, and the actual
value of target parameters can be expeditiously read out.

4. RESULTS AND DISCUSSION

Here, we exploit a fully connected three-layer neural network
as a regressor to predict the actual pressure, which comprises
one input layer, one hidden layer, and one output layer.
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Fig. 2. (a) Microscope images of the hollow silica capillary (left) and the fabricated MBR (right); (b) measured spectra around the resonant
wavelength at 778.9532 nm; (c) transmission spectra of the MBR with the wavelength ranging from 778 to 780 nm; (d) long-term stability
of MBR (inset, Allan variance of resonant wavelength); (e) dependence of the wavelength shift on pressure variations; (f ) real-time wavelength
shift with progressively increasing and decreasing pressure.
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The activated function is rectified linear units (ReLUs) while
the mean square error (MSE) is chosen as the loss function.
In order to optimize the performance of the neural network,
we interrogate the influences of different network parameters
(i.e., epoch, the number of neurons in the hidden layer, and
the learning rate) on accuracy, as shown in Figs. 3(d)–3(f ).
Finally, the epochs are selected as 30, the optimal neurons
of the hidden layer are set as 100, and the learning rate is
set as 1.0 × 10−3. The neurons of the input layer are 5000,
and the output layer has one neuron. We introduce the coef-
ficient of determination (R2) to characterize the accuracy of the
predicted neural network model, which reflects the goodness of
regression and is defined as

R2�y, ŷ� � 1 −

PN−1
i�0 �byi − yi�2PN−1
i�0 �ȳ − yi�2

, (2)

where yi and byi are the ith true value and estimated value, ȳ is
the average value of ground truth, and N is the number of pre-
dictions. Additionally, when the pressure changes from 0 to
100 kPa in steps of 5 kPa, we collect 600 groups of transmis-
sion spectra at each pressure as training data sets while collect-
ing 150 groups of transmission spectra as testing data sets for
the blind test of the network. Therefore, there are totally
12,600 for the training samples and 3150 for the testing sam-
ples. Note that the training and testing data sets are recorded
independently, without any overlap, which promises that the
trained network does not contain the information of testing
data sets.

Figure 4(a) shows that all predicted data points fall on
the measured curve, representing the high prediction accu-
racy. Specifically, the prediction accuracy R2 is determined
to be 99.97%. The histogram distribution of prediction error
of 3150 testing samples is shown in Fig. 4(b). Herein, the

prediction error is defined as the difference between predicted
points and ground truth points. All predictions have an error
of less than 1.8 kPa, with more than 90% of predicted values
below 0.75 kPa. The calculated average prediction error is
0.32 kPa, with the standard deviation of 0.36 kPa.

When exploiting the same WGM microsensor, we further
realize the prediction of arbitrary pressure within the measure-
ment range. Experimentally, the WGM transmission spectra
are first collected as training data sets when the pressure is in-
creased from 30 to 80 kPa with the step of 10 kPa, while the
testing data sets are recorded in steps of 5 kPa. The network
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parameters, activated function, and loss function are consistent
with the aforementioned network model. Figure 4(c) exhibits
the correlation between predicted pressure of each sample and
ground truth, while the prediction error distribution histogram
is shown in Fig. 4(d). It can be seen that the predicted data
(blue dots) are located close to the ground truth (purple dots),
and the prediction accuracy reaches up to 99.51%. The average
error is 0.87 kPa, with a standard deviation of 0.69 kPa.
Remarkably, the predicted pressure manifests excellent linearity
(red line) with the ground truth. Each predicted data point falls
within the 95% prediction bands (orange area), again exhibit-
ing the excellent precision of the proposed method.

Furthermore, the proposed ergodic spectra sensing method
and local features (i.e., resonant wavelength of multiple modes)
extraction are compared. The transmission spectra over the
pressure ranges of 30–80 kPa and 35–75 kPa are collected
in steps of 10 kPa as training and testing data sets, respectively.
The prediction accuracy of 98.94% is obtained when the full
spectra are fed into the three-layer perceptron neural network
model, as depicted in Fig. 5(a). The prediction accuracy of
87.43% is obtained by exploiting the resonant wavelength
of multiple modes, which is 11.51% lower than the ergodic
spectra sensing, as shown in Fig. 5(b). Note that a four-layer
perceptron neural network is used to analyze the extracted local
features, which consists of one input layer, two hidden layers,
and one output layer. There are 20 neurons in the input layer,
and the output layer has one neuron. The first hidden layer has
100 neurons, while the second layer has 50, and the epochs
have 3000. Compared with the MLP model used for ergodic
spectra sensing, it is worth noting that the epochs are increased
from 30 to 3000, and the hidden layers are set as 2. This is
mainly because that the prediction error is so large that it is
difficult to converge when adopting the same neural network
model. The intelligent sensing system unveils the great poten-
tial for high-precision measurement of actual pressure.

5. CONCLUSION

In summary, we propose an ML-assisted ergodic spectra sens-
ing method in an optofluidic resonator for the direct readout
of actual pressure with ultrahigh accuracy. The prediction

accuracy of pressure is up to 99.97%, with an average error
of 0.32 kPa. Over 90% of the predicted values have an error
less than 0.75 kPa. The arbitrary target pressure is directly pre-
dicted with an accuracy of 99.51% in the range of measure-
ment. It is noted that the predicted value of each sample
in the testing data sets falls within the 95% prediction bands.
Moreover, the ergodic spectra sensing accuracy is ∼11.5%
higher than that of simply extracting resonating modes’ wave-
length, demonstrating the high precision of ergodic spectral
sensing. Compared with the conventional single-mode sensing
mechanism, the proposedmethod promises the potential for the
direct readout of actual pressure without the limitation of laser
scanning. It plays significant roles in the high-precisionmeasure-
ment for the generalization of the MLP model to another
WGM sensor without the retraining process by optimizing
the model in future work. In addition, it also provides more de-
grees of freedom, enabling themeasurement ofmultiparameters.
Remarkably, the proposed ML-assisted ergodic spectra sensing
method is not only used for pressure sensing, but also can be
implemented in gas sensing, biochemical sensing, and other
fields. This study lays the foundation for the development of
intelligent sensing based on optical microresonators.
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