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With the increasing complexity of UAV application scenarios, the performance of a single UAV cannot meet the mission
requirements. Many complex tasks need the cooperation of multiple UAVs. How to coordinate UAV resources becomes the key to
mission completion. In this paper, a task model including multiple UAVs and unknown obstacles is constructed, and the model is
transformed into a Markov decision process (MDP). In addition, considering the in�uence of strategies among UAVs, a
multiagent reinforcement learning algorithm based on SAC algorithm and centralized training and decentralized execution
framework, MA-SAC (Multi-Agent Soft Actor-Critic), is proposed to solve the MDP. Simulation results show that the algorithm
can e�ectively deal with the task allocation problem of multiple UAVs in this scenario, and its performance is better than other
multiagent reinforcement learning algorithms.

1. Introduction

Unmanned aerial vehicle, also known as UAV, has the
characteristics of strong mobility, low safety risk coe�cient,
no need for personnel to take o�, repeatability, and so on.
UAV was �rst used in military �elds [1], such as reconnais-
sance, target strike, air earlywarning, and electronic jamming.
In recent years,UAVtechnology is developing rapidly, the size
of UAV is decreasing, and the cost is getting lower and lower.
�erefore, UAV is more and more widely used in civil �elds
such as sensing [2], cargo transportation, communication
relay [3], �re monitoring, and aerial mapping.

With the increasingly complex application scenarios,
such as the combination with the Internet of vehicles [4], a
single UAV cannot e�ectively complete complex and diverse
tasks. It is important to make multi-UAV perform tasks
collaboratively not only to meet the requirement of com-
plicated scenarios but also to make the accomplishment of
tasks to cause less time-and-resource consumption.

Task planning is the most important part for the co-
operative execution of multi-UAV, and task allocation is the

basis of task planning. Task assignment refers to the complex
task environment existing in several UAVs; after taking full
account of the energy consumption, load, nature, role, and
other constraints of UAVs, the coordination between UAVs
and various resources is coordinated to assign one or more
orderly tasks to each UAV, so as to minimize the time and
cost and ensure the e�cient and successful completion of
tasks to the maximum extent.

�e task allocation problem is generally approximated
to the path planning problem [5], that is, how to generate
a collision-free path from the starting site to the desti-
nation to ensure the safety of the vehicle [6]. However, in
the multi-UAV environment, not only the collision be-
tween UAVs and obstacles but also the collision between
UAVs should be considered. At the same time, with the
increase of the number of UAVs, the variation of the
environment is also increasing. In addition, every action
decision of each UAV can be regarded as simultaneous,
and no one UAV can know the current decision of other
UAVs, so it is more di�cult to avoid collisions between
UAVs.
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Fortunately, reinforcement learning (RL) techniques are
emerging to help solve the problem of real-time decision-
making in complex and changing environments. *e
technology allows the drone to learn a strategy to maximize
returns or achieve a specific purpose through its constant
interaction with the environment.

In this paper, a UAV task allocation model including
UAV collision and communication energy consumption is
presented; at the same time, an MA-SAC algorithm is
proposed to assign tasks and plan paths to UAVs.

*e specific works of this paper are as follows:

(i) A multi-UAV task assignment model based on
collision and communication energy consumption
is proposed

(ii) Based on this assignment model, the dynamic
process of task assignment is transformed intoMDP

(iii) A multi-agent reinforcement learning algorithm
MA-SAC is proposed to solve the MDP process

*e rest of this article is organized as follows. Section 2
describes the related work. In Section 3, the multi-UAV task
assignment model is presented. Section 4 introduces the task
assignment algorithm proposed in this paper. In Section 5,
simulation is performed and the results are analyzed. Finally,
the works of this paper are summarized in Section 6.

2. Related Work

In the past few years, many researchers have done a lot of
research on multi-UAV task allocation model and the al-
gorithm to solve the model. *ey not only make the model
more close to the increasingly complex reality environment
but also look for high-performance algorithms. *is section
will introduce relevant work from these two aspects.

2.1. Task Allocation Model. In various scenarios, different
task allocation models need to be established based on a
variety of problems that need to be solved by UAV. In the
paper [7], and this problem is modeled as a traveling
salesman problem (TSP), which minimizes the total flight
time and total range of all UAVs by considering the flight
capability of UAVs. Jia et al. [8] construct a heterogeneous
UAV cooperative multitask allocation scenario by consid-
ering kinematic constraints, resource constraints, time
constraints, and vehicle path model. Song et al. [9] describe
the UAV logistics problem as a mixed integer linear pro-
gramming problem considering UAV flight time, load, and
other constraints. In addition, the task allocation problem of
multi-UAV is usually described as multidimensional mul-
tiple choice knapsack problem (MMKP) [10, 11], dynamic
network flow optimization (DNFO) problem [12], and
multiple processors resource allocation (CMTAP) problem
[13, 14].

2.2.TaskAssignmentAlgorithm. Task assignment algorithms
are mainly divided into optimization algorithm, heuristic
algorithm, and reinforcement learning algorithm.

Optimization methods include Hungarian algorithm
[15, 16], branch-and-bound method [17], and other com-
monly used integer linear programming methods. *ese
algorithms are only applicable to scenarios with simple tasks
and small UAV scale. *eir calculations grow exponentially
as the number of UAVs increases, and these algorithms
cannot generate an accurate trajectory for UAVs in complex
environments. Heuristic algorithms are proposed relative to
optimization algorithms, including GA [18], ACO, and PSO
that simulate animal behavior in nature. *ese algorithms
are generally combined with other algorithms to solve task
assignment problems. In [18], GA is combined with clus-
tering algorithm to solve the task allocation and path
planning problems of multiple UAV. In [19], the author
proposed two improved heuristic algorithms to solve TSP
problems, one is IGA algorithm proposed by improving the
coding rules of genetic algorithm, and the other is PSO-ACO
algorithm combining PSO and ACO. In [20], the author
improves swarm gap algorithm and puts forward three al-
gorithms: location loop (AL), sorting and allocation loop
(SAL), and limit and allocation loop (LAL), which solves the
task allocation problem of the UAV team in a military
operation. However, the heuristic algorithm has the dis-
advantage of falling into local optimum easily, and the real-
time performance of the algorithm is worse and worse with
the increase of environment complexity. *erefore, many
researchers began to study the application of reinforcement
learning in task assignment.

Reinforcement learning is a kind of algorithm that makes
an agent learn the optimal strategy through trial and error in
the environment. Reinforcement learning has been widely
used in UAVmission assignment scenarios over the past few
years. In [21], a transaction inspired multiagent reinforce-
ment learning algorithm was proposed to solve the path
planning and coordination problems of UAV clusters. In
reference [22], the author proposed a MADOL algorithm to
enable multiple UAVs to solve the ambiguous BSN allo-
cation problem in an ambiguous boundary scenario. *e
literature [23] has developed a multiagent reinforcement
learning framework, which solves the problem of dynamic
resource allocation of UAV communication network in
uncertain environment and realizes the balance between
performance gain and UAV overhead. In reference [24], the
author proposed a multiagent reinforcement learning al-
gorithm, compound-action actor-critic (CA2C), which
solves the problem that UAVs perform sensing tasks
through cooperative sensing and transmission. In [25], the
author proposed an FTA algorithm by combining DQN
algorithm with priority experience replay, which effectively
solved the problem of UAV task allocation in uncertain
environment. In [11], the author proposed a DDQN-per
algorithm to solve the task assignment problem of MCS.
However, these single-agent algorithms regard the agents in
the environment as independent and cannot train a good
agent cooperation model. *e proposed MADDPG [26]
algorithm adopts the method of centralized training and
distributed deployment, which well solves the problem of
cooperation and competition among multiagent. In [27], the
author proposed an MADDPG algorithm, trained the
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MADDPG model offline, and then solved the resource al-
location problem in the UAV-assisted vehicle network
online. However, DDPG algorithm is a deterministic
strategy, which may fall into local optimum due to greed.
*e proposed SAC algorithm [28] introduces entropy, which
requires not only maximum reward but also maximum
entropy to enhance the spatial exploration ability of agents.
Based on the idea of centralized training and separate de-
ployment, this paper applies SAC algorithm to the coop-
erative task assignment environment of multiple UAVs and
proposes an MA-SAC algorithm.

3. Task Assignment Model

Multi-UAV should not only complete each task but also pay
attention to their own safety and energy consumption.
Figure 1 shows the task allocation framework of multi-UAV.
In this paper, the distance from UAV to the mission po-
sitions, the collision of UAV, and the communication be-
tween UAV and base station are comprehensively
considered to establish the task assignment model, and the
specific modeling is as follows.

3.1. *e Distance between the UAV and the Mission. *is
paper considers how to assign multiple UAVs to multiple
task points and plan a safe path so as to achieve the goal of
reducing the total cost while completing the task quickly and
safely. In this paper, the UAV cluster is represented by
V � v1, v2, v3, . . . , vn􏼈 􏼉V � v1, v2, v3, . . . , vn􏼈 􏼉. *e position
and track data of each UAV can be obtained by the GPS
device carried by the UAV itself, and the data will be
transmitted to the MEC layer for calculation. For each UAV
vi ∈ V, (sxi, syi) is used to represent its current position.

*e set of tasks to be completed is represented by
W � w1, w2, w3, . . . , wn􏼈 􏼉. For each task wi ∈W, (swxi, swyi)

is used to represent task position.
*e distance between the UAV vi and the mission lo-

cation wj can be calculated using the following formula:

Lij �

����������������������

sxi − swxi( 􏼁
2

+ syj − swyj􏼐 􏼑
2

􏽲

. (1)

3.2. UAV Collision. In order to simulate the real environ-
ment, some obstacles are added to the environment to block
the route of UAV. At the same time, the collision between
UAV and other UAVs is considered. As shown in the
picture, there is a certain safety buffer area between the UAV
and the obstacles.

*e distance between UAVs can be calculated using the
following formula:

Luav �

��������������������

sxi − sxj􏼐 􏼑
2

+ syi − syj􏼐 􏼑
2

􏽲

. (2)

Once the distance between UAVs or between UAVs and
obstacles is less than the safety zone, UAVs are considered to
have a safety risk of collision.

3.3. UAV Communication. In order to grasp the status of
UAV in real time, the communication betweenUAV and base
station needs to be considered, and the position of base station
is represented by (Bx, By). In this paper, UAV’s altitude to the
ground is h,and the straight-line distance between UAV and
base station can be calculated by the following formula:

Luav−base �

������������������������

sxi − Bx( 􏼁
2

+ syj − By􏼐 􏼑
2

+ h
2

􏽲

. (3)

Transmitting the data collected by UAV sensors needs to
consume the energy of the sensor node [29]. In order to
study the energy loss of UAV transmission, we consider the
path loss of UAV communication with base station. In Friis
free space model [30], the relationship between signal
transmitting power and signal receiving power can be cal-
culated by the following formula:

PR �
PTGTGRλ

2

(4π)
2
d
2β

, (4)

where PR is the receiving signal power, PT is the transmitting
signal power, GT is the transmitting antenna gain, GR is the
receiving antenna gain, λ is the signal wavelength, β is the
system loss factor unrelated to propagation, and d is the
propagation distance. In this paper, d is the distance between
each time slot UAV and the base station Luav−base.

In order to ensure normal communication, the power of
the attenuated UAV signal needs to be greater than the re-
ceiving power of the base station. *erefore, the signal
transmitting power of each time slot n of UAV vi must meet
the formula

PTi[n]≥
(4π)

2
d
2β

GTGRλ
2 PRi. (5)

*e communication energy consumption of each UAV
vi to complete the task can be expressed as

obstacle

Task1

Task2

Task3

Task4

Figure 1: Multi-UAV task assignment model.
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Ecom−i � 􏽘
n∈N

PTi[n]δ, (6)

whereN � (n1, n2, n3, . . . , nt) is the time slot set for the UAV
to complete the task. In this paper, the time slot n is ap-
proximated to each step in the simulation. δ is the duration
of each time slot n. In this model, δ is set to 1.

*e total communication energy consumption of UAV
cluster can be calculated by the formula

Ecom � 􏽘
vi∈V

Ecom−i. (7)

4. Task Assignment Algorithm

In this section, we consider the application of reinforcement
learning in multi-UAV task allocation, apply a soft actor-
critic (SAC) algorithm to multiagent environment, and
propose an MA-SAC algorithm. *is algorithm is usually
used to solve the problem described as Markov decision
process (MDP). So, this section will introduce the MDP of
this model, SAC algorithm and MA-SAC algorithm in turn.

4.1. Markov Decision Process. MDP is usually composed of
state, action, and reward function.*erefore, theMDP of the
model can be described as follows.

4.1.1. State. In this process, the state space is composed of
the position and speed of the UAV, the distance between the
UAV and the destination, and the collision risk of the UAV.

4.1.2. Action. *e action space is usually the optional action
set of all UAVs in different states. In this model, the action
space of UAV is expressed as< front, back, left, right, hover >.

4.1.3. Reward. In this model, when multiple UAVs are faced
with multiple tasks, this paper aims to reasonably allocate
task targets and carry out path planning for each UAV, so
that each task can be completed safely and quickly with the
minimum total energy consumption. *erefore, for UAV vi,
the reward can be described as

Ri � RF + RL + Rc − Ecom−i. (8)

*e task assignment problem can be described as

max 􏽘
vi∈V

Ri, (9)

􏽛

n

i�1
wij � V, (10)

􏽛

n

i�1
vij � W, (11)

where RF is the reward for completing the task, and the value
is constant. Rc is the collision reward. RL is the distance
reward. In order to guide the UAV to the mission point, it can

be expressed as RL � −minLij, j ∈ (1, 2, . . . , n), wij indicates
that the mission wi is carried out by UAV vj, and vij indicates
that UAV vi performs mission wj. Formula (10) means that
only one UAV can be assigned to perform each task, and
formula (11)means that eachUAV can only perform one task.

4.2. SAC Algorithm. SAC algorithm is a kind of off-policy
reinforcement learning algorithm. *is paper is improved
based on SAC algorithm proposed in [31]. *e algorithm
improves the critical network on the first version of SAC
algorithm [32]. It removes the value network and uses two Q
networks. *erefore, the SAC algorithm has one actor
network, two critic networks, and two target-critic networks.
Among them, the actor network is used to give the corre-
sponding action according to the change of state, and the
critic network is used to calculate the Q value to evaluate the
action. In order to solve the overestimation problem, the
SAC algorithm adopts a pair of independent critic network
and takes the smaller value of the two when updating. In
order to stabilize the training of Q network, the SAC al-
gorithm introduces a pair of target-critic networks whose
update frequency is less than the critic network.

In order to prevent the strategy from getting into trouble
due to greed, it is necessary to increase the random ex-
ploration ability of the algorithm, so SAC introduces entropy
regularization. When the strategy distribution is more
uniform, the entropy of the strategy is greater, and the
random exploration ability of the algorithm is stronger.
*erefore, the objective function of SAC algorithm not only
requires the maximum final reward but also the maximum
entropy. Its objective function can be expressed as

J(π) � 􏽘
T

t�0
E st,at( )∼ρπ r st, at( 􏼁 + αH π · | st( 􏼁( 􏼁􏼂 􏼃

π∗max � argmaxπ 􏽘

T

t�0
E st,at( )∼ρπ r st, at( 􏼁 + αH π · | st( 􏼁( 􏼁􏼂 􏼃,

(12)

where H(π(· | st)) is the entropy of strategy, r(st, at) is the
reward for time t, and π∗max is the optimal strategy.

4.3. MA-SAC Algorithm. Figure 2 shows the MA-SAC al-
gorithm that we proposed by improving SAC algorithm
based on the multi-UAV task allocation model. MA-SAC
algorithm is based on actor-critic network framework. In
this multi-UAV environment, each UAV has an actor
network, a target-actor network, two critic networks, and
two target-critic networks, which are all composed of fully
connected neural networks.

In the multi-UAV environment, UAV itself is not only
an intelligent body but also a part of the environment of
other UAVs. *erefore, for the critic network of each UAV,
we not only input the environmental state into the critic
network. *e actions of other UAVs are also fed into the
critic network to calculate the Q by a part of the overall
environment. SAC, like DDPG and other algorithms, in-
troduces the experience replay mechanism to reduce the
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correlation between data. �erefore, the whole training
process is divided into two parts: experience collection and
network training. In the experience gathering phase, the
agent performs the actions generated in each step, and then
stores the tuples that include states, action, next state, and
reward 〈S, A, S′, R〉 into the replay bu�er.

When the data in the replay bu�er reaches the threshold,
the network training stage can be entered. At each step, some
data will be sampled from the replay bu�er to update the
parameters of actor networks and critic networks. �e actor
network is trained by the strategy gradient. For each UAV
vi ∈ V, the actor network update targets are as follows:

J θi( )�EX,a∼D α log πi ai |si( )( )−Qπ
i X,a1,...,an( )|ai�πi si( )[ ],

(13)

where πi represents the policy network of the agent i,
θi ∈ θ1, θ2, . . . , θn{ } represents the parameter of the policy
network πi, andX represents the current status of all agents.

Critic networks are updated by minimizing the loss
function as a goal. �e loss function is the mean square error
that can be calculated by the formula:

L�E X,a,r,X′( )∼D Qπ
i X,a1, . . . ,an( )−yi( )2[ ], (14)

yi � ri +cE Qπ
i X′,a1′, . . . ,an′( ) |ai′�πθi si′( )−α log πθi

ai′ |si′( )( )[ ],

(15)

where X′ represents the next status of all agents, ai′ repre-
sents the next action of the agent i, and si′ represents the next
state of the agent i.

To ensure the stability of training, the parameters of
actor networks and critic networks will be copied to the
corresponding target networks in each iteration. Here, the
algorithm adopts the soft update method, so in each step,
some actor and critic network parameters are updated to the
corresponding target network, which can be calculated by
the formula

ψ⟵τψ +(1 − τ)ψ, (16)

θ⟵τθ +(1 − τ)θ, (17)

where ψ is the parameter of target-critic network, ψ is the
parameter of the critic network, and τ is the update ratio.

�e pseudocode of the MA-SAC algorithm is demon-
strated in Algorithm 1, and the meanings of the parameters
are shown in Table 1.

5. Experimental Results and Analysis

In this section, the performance of MA-SAC algorithm in
multi-UAV task assignment environment is studied. We use
the Pytorch deep learning framework to simulate this sce-
nario and compare it with MADDPG algorithm. Table 2
shows the relevant hyperparameters of the algorithm sim-
ulation in this paper.

In this experiment, we constructed an environment in
which multi-UAV cooperate to complete tasks. �e envi-
ronment consists of three UAVs, three mission positions,
one obstacle, and a base station to communicate with the
UAVs. Firstly, the MADDPG algorithm proposed in ref-
erence [26] is selected to compare the convergence per-
formance. Figure 3 shows the convergence process of MA-

Actor Target Actor

Critic1

Critic2

Target Critic1

Target Critic2

Target-Actor Actor

Target Critic1

Target Critic2

Critic1

Critic2

Agent 1 Agent n

……

samplesample

min min

Replay Buffer

Q1

Q2

Q1

Q2

a s as a′a′ s′s′

Figure 2: Actor and critic neural network of MA-SAC.
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SAC algorithm and MADDPG algorithm during training in
this environment. In this experiment, we performed 50,000
training episodes and averaged the rewards every 1,000
episodes. By comparing the two algorithms, it can be found
that the proposed MA-SAC algorithm can finally converge
to around 300, while the MADDPG algorithm finally
converges to around 220. It can be seen that the convergence
speed of the two algorithms is similar in this scenario, but the
convergence result of the MA-SAC algorithm is better than
that of the MADDPG algorithm, because the training goal of
the MA-SAC algorithm is not only to maximize the reward
of the drone but also to maximize the entropy of the UAV

strategy. *is increases the ability of the UAV to explore the
space, thereby improving the performance of the algorithm.

To verify the effectiveness of the algorithm in this sce-
nario, we conducted 500 episodes of tests on the MA-SAC
algorithm in this environment and compared it with other

(1) Initialize environment
(2) Initialize critic network and actor network
(3) Initialize max episodes, replay buffer, batch size
(4) for episode ∈ [1, episodes] do
(5) Reset environment
(6) Get current state si for each agent, i

(7) for step ∈ [1, steps] do
(8) Select actions ai for each agent vi

(9) Get all agents next states si
′ and rewards ri

(10) Store < ai, si, si
′, ri > to replay buffer D

(11) if Dsize > Bsize then
(12) Sample batch B from replay buffer D
(13) for vi, where i � 1:N do
(14) Update the critic network
(15) Update the actor network
(16) Update the target network according to formulas (15), (16)
(17) end for
(18) end if
(19) end for
(20) end for

ALGORITHM 1: Algorithm of MA-SAC.

MA-SAC
MADDPG

10000 20000 30000 500000 40000
episodes

100

0

100

200

300

m
ea

n 
re

w
ar

d

Figure 3: Reward of different algorithms.

Table 2: *e parameters of simulation.

Parameter Value
Number of UAVs 3
Number of tasks 3
Number of obstacles 1
Number of base stations 1
Steps of episode 35
Capacity of replay buffer 1000000
Number of network neurons 128
Learning rate 0.001
Discount factor of reward 0.99
Update ratio of target network τ 0.001

Table 1: Explanation of variables and functions in the algorithm of MA-SAC.

Variable Explanation
episodes *e maximum number of iterations
steps *e maximum step length for each iteration
Dsize *e amount of data in the replay buffer
Bsize Sampling number

6 Mobile Information Systems



multiagent reinforcement learning algorithms. As shown in
Table 3, the task completion rate of the MA-SAC algorithm
reaches 95.16%, which is a great improvement compared
with that of the COMA and VDN algorithms, and the task

completion rate is also increased by 2.4% compared with the
MADDPG algorithm.

Figure 4 shows the dynamic assignment process of UAVs
in the task area before training. At this time, none of the
three UAVs has learned any strategy, so they are in an
exploration state in the environment. It can be seen from the
route of the UAV in the task assignment process that the
UAV does not have a clear mission target at this time, and
they move randomly in space. UAV 2 even collides with
obstacles.

Figure 5 shows the rendering of the multi-UAV task
assignment process when using the proposed MA-SAC al-
gorithm for 20,000 episodes of training. It can be seen that
although the UAVs have learned to approach the mission
point at this time, there is no coordination between them.
Both UAV 2 and UAV 3 flew to the same mission location,
resulting in not all missions being completed.

Figure 6 shows the effect of the task assignment process
of the UAV when the training reaches 50,000 episodes. At
this point, the trained model can already solve the task
assignment problem in this environment well. UAVs not
only consider their distance when assigning tasks but also
take into account the strategies of other UAVs and cooperate
with each other to complete all tasks in the mission area. At
the same time, UAVs have also learned to stay away from
obstacles to reduce their own risks when completing tasks. It
can be seen that UAV 2 is relatively close to the obstacle at
the beginning, so there is a possibility of collision. In order to
ensure its own safety, it first flies away from the obstacle, and
then flies to the mission location after reaching the safe area.

6. Conclusions

In this paper, a multi-UAV cooperative task assignment
model in complex environment is constructed by considering
UAVdistance, collision, and communication.Meanwhile, we
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UAV3

base station
Task
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0.5

0.0

0.5

1.0

1.5

y

0.75 0.50 0.25 0.00 0.25 0.50 0.751.00
x

Figure 4: Rendering of task assignment during 0w episodes of
training.
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0.75 0.50 0.25 0.500.25 1.000.751.00 0.00
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Figure 5: Rendering of task assignment during 2w episodes of
training.
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1.00

0.75
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0.00
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0.50

y

0.75 0.50 0.25 0.00 0.25 0.50 0.751.00
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Figure 6: Rendering of task assignment during 5w episodes of
training.

Table 3: Task completion rate.

Algorithm Task completion rate (%)
MA-SAC 95.16
MADDPG 92.76
COMA 82.67
VDN 68.34
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propose an MA-SAC algorithm to solve the model by com-
bining theSACalgorithmofdeep reinforcement learningwith
multiagent framework of centralized training and decen-
tralized execution. Simulation results show that the MA-SAC
algorithm is superior to the MADDPG algorithm in con-
vergence result inmulti-UAV task allocation environment. In
terms of task completion rate, the model trained by the MA-
SAC algorithm also achieved a better result.

In the future work, more complex factors will be
considered in the environment, such as making the com-
munication model more suitable for real scenes and weather
changes. At the same time, it will also study the larger-scale
dynamic task allocation of UAV. Since this paper only
studies the UAV cooperation scenario, the UAV task allo-
cation in the countermeasure scenario will be studied in the
future.
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