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Abstract: The technologies of ultrasound detection have a wide range of applications in marine
science and industrial manufacturing. With the variation of the environment, the requirements of
anti-interference, miniaturization, and ultra-sensitivity are put forward. Optical microcavities are
often carefully designed for a variety of ultra-sensitive detections. Using the packaged microsphere
cavity, we fabricated an ultrasound sensor that can work in an underwater environment. During
practical detection, the optical resonance mode of the cavity can work with real-time response
accordingly. The designed structure can work in various complex environments and has advantages
in the fields of precision measurement and nano-particle detection.
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1. Introduction

The rational use of ultrasound has promoted the development of modern industry
and medicine. At present, it has a wide range of research and mature applications in
medical imaging, marine science, industrial manufacturing, and other fields [1-5]. However,
in some complex environments, there are several key limitations in existing ultrasound
detectors. Compared with the traditional detection method using piezoelectric signals [6-8],
the optical detection method exhibits the characteristics of anti-electromagnetic interference,
and still has high sensitivity in the process of device miniaturization [9]. On the other hand,
the optical whispering-gallery-mode microcavity with a small mode volume can enhance
light-matter interactions. Therefore, it is often used for ultra-sensitive detection, such as
particle sensing [10-13], temperature measurement [14], magnetic field sensing [15,16] and
microwave frequency measurement [17].

Currently, there are many approaches to acoustic sensing based on the whispering
gallery mode resonators. Most of the works use on-chip devices, such as micro-ring res-
onators, as sensing elements [18-21]. Admittedly, it has great advantages in certain circum-
stances. Considering the complex technology and manufacturing cost, some researchers
turn to microbubble resonators [22,23] and microsphere resonators [24-26]. The hollow
structure of the microbubble cavity makes it extremely sensitive to acoustic vibration sig-
nals. In the air, its noise equivalent pressure can be as low as 4.4 mPa/Hz!/? [23]. On the
other hand, the microsphere cavity is often used in basic research because of its simple
fabrication, low cost, and high quality [27,28]. Recently, Li et al. designed a compact and
highly sensitive voice-eavesdropping microresonator [26], which is used as the sensing ele-
ment. Combining the high optical sensitivity of the microsphere cavity and the mechanical
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sensitivity of the cantilever of the microsphere cavity, the noise equivalent pressure is as
low as 52 pPa/Hz!/2. These new structure sensors can resist electromagnetic interference
and have high sensitivity. In most cases, however, they are only suitable for environments
where the air is the acoustic propagation medium due to the fragile coupling. Therefore,
the working environment of the sensing device will be limited.

In this paper, we fabricate an ultrasound sensor based on silica microcavities that can
work in the underwater environment. The microsphere resonator and the fiber taper are
packaged together, which can make the entire system maintain long-term stability. By mon-
itoring the optical resonance mode, the ultrasonic signal applied to the test environment
can be detected. In addition, we found that the resonance mode of the high-quality factor
is more easily affected by ultrasound, and the high-frequency ultrasound is more easily
detected. Here, the designed device has the advantages of being low-cost, easy to prepare,
and recyclable. More importantly, it can break the restrictions of the working environment,
which is expected to make it applicable to industrial manufacturing and vibration detection.

2. Experiment Methods
2.1. Fabrication of Microsphere Ultrasound Sensors

Here we prepare the microsphere by using the single-mode fibers (YOFC CS780_125-
14/250) with an operating wavelength of 780 nm. Its fiber core and fiber cladding diameter
are 4.2 and 125 pm, respectively. The fabrication process is as follows: Firstly, the coating
at the end of the single-mode fiber is stripped off. Then, the bare fiber tip is cleaned with
anhydrous ethanol. After that, a carbon dioxide laser is used to fuse the end of the fiber.
Finally, a high-quality factor silica microsphere cavity can be fabricated. Since the fiber
cladding diameter is 125 um, the diameter of the microsphere cavity we prepared in this
experiment is about 200 um, and the quality factor can easily reach 108. In particular,
the ultrasound sensor device we designed is based on the change of the optical resonance
mode of the microsphere cavity, which is often realized by the fiber taper in the experiment.
However, if the entire system is not packaged, the coupling process between the fiber
taper and the microsphere cavity cannot be maintained as stable for a long time in the
underwater environment. We use optical coating material (Mypolymers MY-133-MC) to
fix the coupling points and also to protect the tapered area of the fiber. The entire system
is encapsulated on a glass slide, as shown in Figure 1a. Compared with the quality factor
of 108 before encapsulation, although this method sacrifices the high-quality factor of
the microsphere cavity to a certain extent, it enables the system to work in a complex
environment. We prepared a microsphere with a diameter of 200 um for measurement.
Benefiting from the ultra-low optical transmission loss of the microsphere cavity, its quality
factor after encapsulation is still around 10°, as shown in Figure 2. Further, in Table 1, we
compare the quality factors of the whispering gallery mode microcavity before and after
the encapsulation in recent years.
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Figure 1. (a) Photograph showing the microsphere after encapsulation. Inset: incompletely packaged
microsphere. (b) Experimental scheme of the ultrasound detection. PC, polarization controller; PD,
photodetector; OSC, oscilloscope; FG, function generator.
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Figure 2. Transmission spectrum of the microsphere cavity. (a) Mode i with a central wavelength of
778.0567 nm. (b) Mode ii with a central wavelength of 777.6010 nm. The blue solid line represents the
experiment data, and the red solid line represents the corresponding Lorenz fitting.

Table 1. Variation found in the literature on the quality factor of whispering gallery mode microcavi-
ties before and after encapsulation.

Reference Diameter Before Encapsulation After Encapsulation
F. Monifi et al. (2013) [29] 120 pm 5 x 107 1 x 107

Wang et al. (2014) [30] 153 um — 0.9 x 10°
Zhao et al. (2017) [31] 80 um - 2 x 107

Yang et al. (2020) [32] 90 um 107 3.52 x 10°

Sun et al. (2021) [25] 60 pm - 8.5 x 10°

2.2. Experimental Setup

The optical microcavity shows high sensitivity and slight mechanical vibration, which
affects its optical resonant mode. Therefore, we designed a measurement system for
sensing, as shown in Figure 1b. Considering the transmission loss of the communication
band in the underwater environment, we use a tunable laser (NewFocus TLB-6712) with an
optical wavelength near 780 nm. The laser is passed through an attenuator, a polarization
controller, and then coupled into the microsphere cavity through a fiber taper. Finally,
an oscilloscope (Tektronix MDO3104) is used for measurement after the optical signal is
converted to the electrical signal by a photodetector (Newport 1801-FC). Simultaneously,
the function generator (Tektronix AFG3022C) generates a triangular wave with a frequency
of 50 Hz for tuning the pump wavelength and scanning the optical resonance mode in the
microsphere. The two ultrasound generators (FUYANG F-103) used in the experiment have
fixed frequencies, which are 26.9 and 39.4 kHz, respectively. Furthermore, the intensity of
ultrasound signals can be tuned by tuning the current.

In order to measure the response of the microsphere resonant modes to the ultrasound
signals, we pre-select two resonant modes with high-quality factors, as shown in Figure 2.
The resonant wavelengths of mode i and ii are 778.0567 and 777.6010 nm, respectively. The
quality factors of the modes are Q; = 1.2 x 10° and Q;; = 2.3 x 10°, respectively. Taking
mode i as an example, first, an ultrasound source with a frequency of 26.9 kHz is placed in
water, and then different ultrasound powers are selected to measure the response of mode i.
Note that it is necessary to turn off the ultrasound source whenever changing the ultrasound
power and wait for the mode i to return to the original position before measuring. This is to
ensure that the measurement process is in the same measurement environment. After that,
on the premise of keeping the original optical mode i unchanged, the ultrasound source
with a frequency of 39.4 kHz is replaced to repeat the above measurement process. Since
the thermal effect of the microcavity [33] is unfavorable for this experiment, it is necessary
to adjust the optical signal input to below the threshold power using an attenuator.
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3. Phenomenological Theoretical Model

In this section, we propose a phenomenological theoretical model of the sensor system.
First, we focus on the absence of an ultrasound signal in the environment. In this case,
a single optical resonance mode is described by the well-known coupled-mode theory [34].
The transmission spectrum of the system could be written as

- A%+ (KO — Kex)2/4

T(w) =27 (Ko + Kex)2/4"

)

Here, A = w — w, is the detuning of the laser. w, is the central resonant frequency
of the cavity mode. g and .y are the intrinsic dissipation and the coupling dissipation,
respectively. When the intrinsic dissipation equals the coupled dissipation, the system
approaches the critical coupling condition. However, when the ultrasound source is turned
on, the mechanical vibrations generated by the ultrasound will cause the optical coat-
ing material to be squeezed. Its interior undergoes localized deformation, changing its
surrounding density and refractive index. Simultaneously, the evanescent fields of the whis-
pering gallery mode and the fiber taper are inside the optical coating material. Therefore,
when the refractive index of the optical coating material changes, the resonance conditions
of the microsphere cavity are also affected. This will alter the resonance wavelength and
mode linewidth. Zhu et al. have fabricated a magnetometer using a similar sensing mech-
anism [35]. Furthermore, we phenomenologically attach this change in refractive index
to wy, and %, and add them to Equation (1). In this way, the transmission spectrum of the
system can be described as

. A%, + [KO - (Kex + Ku)]2/4

Tu(w) B A% + [KO + (Kex + Ku)]2/4.

@

Here, Ay, = w — w, is the detuning of the input field after ultrasound tuning. w_ =
w, — wy denotes the resonance frequency after ultrasound tuning. x; is the additional
coupling dissipation due to the ultrasound source. The change in transmission spectrum is
numerically simulated in Figure 3. Due to the limitations of the ultrasound device we are
using, it is hard to measure a wider range of ultrasound frequencies. Therefore, the change
in transmission spectrum can only be simulated phenomenologically.

Transmission (a.u.)

— wy/ko =0 & ky/ko =0

wu/ko = 0.5 & Ky /Ko = 0.2
— wy/ko =1 & Ky/ko =04
— wy/ko = 1.5 & Ky /Ko = 0.6
— wy/ko =2 & Ky/ko = 0.8

-6 -4 —2 0 2 4 6
Ay /Ko

Figure 3. The numerical simulation of the changing of the transmission spectrum of the system in the
presence of ultrasound.
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4. Results and Discussion

To demonstrate the principle of ultrasound sensing, the response of mode i to dif-
ferent ultrasound intensities is measured at ultrasound frequencies of 26.9 and 39.4 kHz,
respectively, as shown in Figure 4. It can be seen that along with the increase in ultrasound
intensity, the optical resonance mode of the microsphere is obviously shifted. As we men-
tioned in Section 3, different intensities of ultrasound generate different magnitudes of
sound pressure, which lead to different local deformation of the optical coating material.
This ultimately alters its refractive index, causing a frequency shift of the optical resonance
mode. By comparing Figure 4a,b, we find that the shift of mode i is larger when the
ultrasound frequency is 39.4 kHz under the same environment. That is to say, under the
same circumstances, the stronger the ultrasound frequency, the more obvious the local
deformation of the optical coating material, and the greater the change of the refractive
index. It can be determined that the change in the optical resonance mode is determined by
the combined effect of ultrasound frequency and intensity. Moreover, optical barcodes of
cavity modes are more useful for describing specific variations of multiple optical resonance
modes. It is widely used in the research of precise temperature measurement [14] and
microwave frequency measurement [17]. The optical barcodes corresponding to the two
ultrasound frequencies are shown in Figure 4c,d, respectively.

26.9 kHz Ultrasound 39.4 kHz Ultrasound
(a) (b)
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Figure 4. Variation trend of mode i with ultrasound. (a) The response of mode i to the 26.9 kHz

ultrasound. (b) The response of mode i to the 39.4 kHz ultrasound. (c) Optical barcode corresponding
to (a). (d) Optical barcode corresponding to (b).

Notably, a key factor for an optical microcavity to act as a high-sensitivity sensing
device is its high-quality factor. To this end, we measured the response of another mode
ii with a high-quality factor to ultrasound on the basis of the above studies, and the
results are shown in Figure 5. It can be seen intuitively that the modulation of the high-
quality factor of the optical resonance mode spectrum by ultrasound is obvious. To further
study the changes in optical resonant modes, we extracted the wavelength shifts and
mode linewidths under each of the above experimental conditions, as shown in Figure 6.
For mode i, when the ultrasound frequencies are 26.9 and 39.4 kHz, the slopes of the
wavelength shift after linear fitting are k; ;1 = 2.83 and k;_,;» = 6.138, respectively; and
the slopes of the mode linewidth are k;_,;;,,1 = 0.22 and k;_ ;1,0 = 0.275, respectively.
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For mode ii, when the ultrasound frequencies are 26.9 and 39.4 kHz, the slopes of the
wavelength shift are k;;_,,;1 = 3.4, kij_y120 = 5.37, respectively; and the slopes of the mode
linewidth are kj;_ ;1,1 = 0.59 and kj;_ ;100 = 1.05, respectively. From the fitting results,
the responses of different modes to ultrasound with the same frequency and intensity are
slightly different. If only the change of a single resonant mode is considered, there will
be a large error. However, the use of optical barcodes with multiple resonance modes can
reduce measurement errors to some extent. On the other hand, as shown in Figure 6d,
when fitting the mode linewidth, we drop the last point. This is because the resonance
mode is modulated by high-frequency and high-intensity ultrasound, which affects the
mode linewidth and leads to inaccurate fitting.

26.9 kHz Ultrasound 39.4 kHz Ultrasound
(b)

—~
o
~

Transmission (a.u.)
Transmission (a.u.)

=0 A
—1=0.16 A
=026 A

|
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1=0.36 A 1=0.36 A \/
1=0.46 A 1=0.46 A
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R | I YR e
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Figure 5. Variation trend of the resonance of mode ii with ultrasound. (a) The response of mode ii to
the 26.9 kHz ultrasound. (b) The response of mode ii to the 39.4 kHz ultrasound. (c) Optical barcode
corresponding to (a). (d) Optical barcode corresponding to (b).
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Figure 6. Experimental data and fitted curves of resonance wavelength shift and mode linewidth.
(a) Mode i under the 26.9 kHz ultrasound. (b) Mode i under the 39.4 kHz ultrasound. (c) Mode ii
under the 26.9 kHz ultrasound. (d) Mode ii under the 39.4 kHz ultrasound.

5. Conclusions

In summary, we experimentally realized an ultrasound detection device that can work
in the underwater environment. The unique design features, packaged microsphere cavity
and fiber tapered waveguide of the ultrasound detection device permit the high-quality
factor (10°) to be maintained in an aqueous environment. The presence of the ultrasound
signals can be judged by monitoring the optical resonance mode of the microsphere cavity.
Simultaneously, the higher the quality factor, the more obvious the phenomenon of ultra-
sound modulation. When the whole system is at the same ultrasound frequency, as the
driving current increases, the optical resonance wavelength will be red-shifted, and the
linewidth of the mode will also be broadened. On the other hand, when the whole system is
under the same driving intensity, higher frequency ultrasound will lead to a more obvious
mode redshift. Since each optical mode has different response conditions, this method has
limitations for the direct measurement of ultrasound frequency and intensity. In order to
obtain more accurate results, optical barcodes with multiple optical modes can be used for
characterization. More interestingly, the coupling system can be packaged into different
devices to measure weak vibration signals for more complex environments.
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