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bstract

Sensitivities (S) and quality factors (Q) have been trade-offs in optical resonator sensors, and optimal geometry that maximizes
oth factors is under active development. In this paper, we experimentally demonstrate an optical sensor based on photonic crystal
PhC) nanoslotted parallel quadrabeam integrated cavity (NPQIC) with high figure of merit (FOM). Both high sensitivity (S) of

51 nm/RIU (refractive index unit) and Q-factor >7000 in water at telecom wavelength range have been achieved simultaneously,
hich features a sensor figure of merit (FOM) >2000, an order of magnitude improvement over previous photonic crystal sensors.

 2015 Elsevier B.V. All rights reserved.
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.  Introduction

Over the past decades, optical micro-resonators have
een widely used in optical sensors, which have attracted
onsiderable interest for lab-on-chip applications [1].
n recent years, significant research has focused on
chieving higher sensitivities (S) or higher quality fac-
ors (Q) in chip-integrated label-free biosensors [2,3].
o far, many micro-photonic devices or platforms based
n photonic crystals (PhCs) [4–18], surface plasmon
Please cite this article in press as: D. Yang, et al. Ph
grated cavity for refractive index sensing with high figure
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esonators (SPR)[19–21], interferometers [22–24], and
ing resonators [25,26] have been proposed to real-
ze optical sensors. For these sensors mentioned above,
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the figure of merit can be defined as FOM = S  ·  Q/λres

[27], where S  = �λ/�n  is the refractive index sensitiv-
ity, which characterizes the shift of resonant wavelength
(�λ) in response to the surrounding index change (�n),
Q is the quality factor of the resonant cavity, and λres is
the cavity resonant wavelength.

However, sensitivities (S) and quality factors (Q) have
been trade-offs in optical resonant sensors [14], which
limits the FOM: to achieve high S, the optical mode
needs to overlap strongly with the detecting target (i.e.
outside of the wave guiding medium), yet in order to
achieve a higher Q, the optical mode should be more
localized in the wave guiding medium. For example,
otonic crystal nanoslotted parallel quadrabeam inte-
 of merit, Photon Nanostruct: Fundam Appl (2015),

Lai et al. [12] demonstrated photonic crystal sensors
with high Q-factors ∼7000. However, S  was limited
to ∼60 nm/RIU (refractive index unit), and resulting
in FOM limited ∼300. Wang et al. [18] demonstrated
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large S  of 900 nm/RIU in a slot double-beam wavegui-
des/cavities. However, Q  was limited to 700, resulting in
FOM limited ∼400.

In the previous work [14], we proposed and designed
a photonic crystal nanoslotted parallel quadrabeam inte-
grated cavity (NPQIC), that can remedy the fundamental
trade-off between high sensitivity and high Q-factor in
optical resonant sensors. In this paper, we experimentally
demonstrate an optical sensor based on photonic crystal
(PhC) nanoslotted parallel quadrabeam integrated cav-
ity (NPQIC) with high figure of merit (FOM). Both high
sensitivity (S) of 451 nm/RIU (refractive index unit) and
Q-factor >7000 in water at telecom wavelength range
have been achieved, which features a sensor figure of
merit (FOM) >2000, an order of magnitude improvement
over previous photonic crystal sensors.

2.  Device  fabrication

We fabricated and characterized the PhC nanoslot-
ted parallel quadrabeam integrated cavity (PhC-NPQIC)
sensor. The PhC-NPQIC sensor devices used in this
experiment were fabricated from silicon-on-insulator
(SOI) with 220 nm device layer on a 2 �m thick
buried oxide layer. Firstly, first electron beam (E-beam)
lithography (Elionix ELS-7000) was performed using
XR-1541 (6% HSQ) E-beam resist spun at 4000 rpm
(∼100 nm thick), followed by development in MF-319.
Fig. 1(a) shows the scanning electron microscope (SEM)
images of PhC-NPQIC sensor device after first E-beam
lithography. As seen, the demonstrated NPQIC sen-
sor consists of a PhC nanoslotted parallel quadrabeam
integrated cavity with nano-gap separations and two
high-efficient in/out couplers on both sides of the NPQIC
cavity. Secondly, refractive ion etching (RIE) of the
exposed silicon region was performed with C4F8, SF6,
and Ar gases. After RIE, the silicon region under the E-
beam resist will be retained, while the silicon exposed
in the air will be etched and removed. Fig. 1(b) and
(c) displays the SEM images of PhC-NPQIC cavity and
taper coupler after refractive ion etching (RIE), respec-
tively. As designed in [14], air hole gratings are in
rectangular shape (Fig. 1(a) inset), the silicon thickness
of the NPQIC sensor is 220 nm, the periodicity (lat-
tice constant) a  = 500 nm, the single nanobeam width
b = 200 nm, the slotted gap between adjacent nanobeams
is w  = 100 nm, and the total width of the experimental
PhC-NPQIC sensor device is 1.1 �m. The widths of the
Please cite this article in press as: D. Yang, et al. Ph
grated cavity for refractive index sensing with high figure
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rectangular gratings are kept the same at 140 nm. The
lengths of the gratings are quadratically tapered from
cavity center wcen = 300 nm to both sides wside = 225 nm,
i.e. wx(i) = wx(1) + (i-1)2(wx(imax)−wx(1))/(imax −  1)2 (i
 PRESS
mentals and Applications xxx (2015) xxx–xxx

increases from 1 to imax). The final cavity structure is
symmetric to its center, and on each side, there are 40
gratings (imax = 40) in the Gaussian mirror region and
an additional 20 segments on both ends. Fig. 1(d) shows
the field profile obtained from 3D finite-difference-time-
domain (3D-FDTD). It is clearly seen that optical field is
strongly localized in the slotted region. The interactions
between optical mode and analytes will be efficiently
enhanced and high refractive index sensitivity can be
achieved.

Then, in order to achieve highly efficient coupling
between the input/output fiber lens and the NPQIC sen-
sor, a second E-beam lithography was performed with
SU8-2002 E-beam resist to fabricate the input/output
bus waveguides [28]. The microscope images of the SU8
polymer input/output bus waveguides as shown in Fig. 2.

Finally, to remove the XR-1542 E-beam resist on the
sensor, an opening was defined by photolithography with
S1818 photoresist. 7:1 buffered oxide etchant (BOE) was
applied for 1 min, followed by rinsing in deionized (DI)
water. Finally, photoresist was removed with acetone and
IPA.

3.  Experimental  setup  and  optical
characterization

A schematic of the measurement setup is shown in
Fig. 3(a). TE-polarized light lunched from a tunable
laser (Santec TSL-510) was coupled to the edge of the
chip via an optical fiber (OZ optics) through a polar-
izer controller. The SU8 polymer waveguide couplers
fabricated on-chip were designed to match the mode
of the tapered fiber. Thus, light can be effectively cou-
pled from the optical input fiber in-to NPQIC sensor
device, and out-to the output fiber and finally to the
detector. Fig. 3(b) shows the experimental alignment
platform used for NPQIC sensor device measurements.
Fig. 3(c) are the zoom-in images the experimental sen-
sor device. As seen in Fig. 3(c), NPQIC sensor chip
with connected tubes was clamped by home-made clamp
and aligned to optical fibers. A microfluidic channel
was fabricated with Polydimethylsiloxane (PDMS) by
replica molding of a SU8 template, with dimensions
2 mm ×  100 �m ×  50�m (length, width and height).
And two sub-millimeter diameter holes on both sides of
microfluidic channel were punched into PDMS as inlet
and outlet for sample delivery.

Fig. 4 shows the measured experimental transmission
otonic crystal nanoslotted parallel quadrabeam inte-
 of merit, Photon Nanostruct: Fundam Appl (2015),

spectrum (top) and 3D finite-difference time-domain
simulation (3D-FDTD) (bottom) of the NPQIC sensor
device immersed in DI water, respectively. The NPQIC
cavity has a resonant wavelength at 1536.30 nm, with
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Fig. 1. (a) SEM images of the proposed Si PhC-NPQIC sensor after the first E-beam lithography, which consists of a PhC nanoslotted parallel
quadrabeam integrated cavity with nano-gap separations and two high-efficient in/out couplers on both sides of the NPQIC cavity. The structure is
symmetric with respect to its center (red dashed line). Inset: zoom in of the NPQIC cavity center and taper couplers, respectively. SEM images of (b)
P espectiv
n t nanob
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150

151
hC-NPQIC cavity and (c) taper coupler after refractive ion etching, r
anobeam width b = 200 nm, the slotted gap width w between adjacen
ensor device is 1.1 �m. (d) 3D FDTD simulation of the major field dis
o color in this figure legend, the reader is referred to the web version 

igh Q factor of 7015, obtained from Lorenztian fit-
Please cite this article in press as: D. Yang, et al. Ph
grated cavity for refractive index sensing with high figure
http://dx.doi.org/10.1016/j.photonics.2015.01.008

ing. As seen, the experimental obtained Q  value is lower
han its theoretical prediction (Q  ∼  106) at 1535.88 nm,
rimarily because of the water absorption at telecom
avelength range, surface roughness and parameter

Fig. 2. The schematic of microscope image of the S
ely. Here, the designed parameters: periodicity a = 500 nm, the single
eams = 100 nm, and the total width of the experimental PhC-NPQIC
n profile (Ey) in the PhC-NPQIC. (For interpretation of the references
rticle.)

discrepancy between the designed structure and final
otonic crystal nanoslotted parallel quadrabeam inte-
 of merit, Photon Nanostruct: Fundam Appl (2015),

structure after E-beam lithography and reactive ion etch-
ing processes. In addition, Q-factor of the optical cavity
will be limited to the order of 104 due to the water
absorption [29].

U8 polymer input/output bus waveguides.
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Fig. 3. (a) Schematic of the measurement setup. (b) Experimental a
in image of the experimental sensor device with connected input/out
coupling fibers.

Then, in order to verify the figure of merit (FOM) of
the proposed PhC-NPQIC sensor device in this paper,
NPQIC sensor was calibrated with liquids of known
refraction indices to characterize its response to bulk
refractive index variations. Different concentrations of
Please cite this article in press as: D. Yang, et al. Ph
grated cavity for refractive index sensing with high figure
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ethanol/water solution (volume ratio, v/v) were injected
into the PDMS microfluidic channel through the tubes by
syringe (Fig. 3(c)). Fig. 5 shows the resonant wavelength
shifts as a function of the refractive indices controlled by

Fig. 4. (a) Experimental measured output signal (top) and (b) 3D-
FDTD simulated transmission spectrum (bottom) of the silicon NPQIC
sensor with the infiltration of distilled water, respectively. The reso-
nance peak of fundamental mode at 1536.30 nm with a Lorentzian fit
indicating an experimentally measured Q-factor 7015 in DI-water.

170

171

172
t platform used for NPQIC sensor device measurements. (c) Zoom
s clamped by home-made clamp and aligned to optical input/output

different concentrations of ethanol and water. Here, the
different volume ratios concentration used in our mea-
surement are 0% (DI-water), 10%, 20%, 30%, 40%,
50%, 60%, 80%, respectively. As seen from Fig. 5,
the dependence of the resonant wavelength shifts on
the refractive indices is linear. The experimental bulk
refractive index sensitivity S = �λ/�n  = 451 nm/RIU is
achieved, which is close to the 3D-FDTD simula-
otonic crystal nanoslotted parallel quadrabeam inte-
 of merit, Photon Nanostruct: Fundam Appl (2015),

tion result (540 nm/RIU). Therefore, experimental FOM
(=S ·  Q/λres) of 2060 is obtained, an order of magni-
tude improvement over previous photonic crystal sensors

Fig. 5. Experimental resonant wavelength shifts as a function of the
variations in refractive indices of different volume ratio concentrations
ethanol/water solutions (v/v), changing from 0% (DI-water), 10%,
20%, 30%, 40%, 50%, 60%, 80%, respectively.
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12,18]. In addition, it is worth mentioning that the sen-
itivity can be even increased by suspending the cavity
ff the substrate.

.  Conclusion

In summary, we have experimentally demonstrated an
ptical sensor based on photonic crystal (PhC) nanoslot-
ed parallel quadrabeam integrated cavity (NPQIC)
ith high figure of merit (FOM). A Q-factor as high

s 7015 in DI-water was measured. The confined
ode has a large percent of optical field energy being

trongly localized in the slotted region (void space).
o, the interaction between optical mode and analytes

s efficiently enhanced. The parameters for the NPQIC
ensor are optimized to achieve a high sensitivity while
eeping a high Q-factor. We fabricated the NPQIC
ensor device by E-beam lithography and character-
zed in ethanol/water solutions of different volume ratio
oncentration to confirm the numerical results. The mea-
urement result shows a refractive index sensitivity as
igh as 451 nm/RIU. The figure of merit (FOM) of the
PQIC sensor over 2000 can be achieved, an order of
agnitude improvement over previous photonic crystal

ensors. Furthermore, considering the benefits of high Q-
actor, high sensitivity, large FOM, and small footprint,
e believe that the proposed PhC-NPQIC sensor device

s potentially a promising platform for refractive index
ased biochemical sensing and lab-on-chip applications.
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