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Abstract
Optical microcavities have the ability to confine photons in small mode volumes for long periods of time, greatly enhancing 
light-matter interactions, and have become one of the research hotspots in international academia. In recent years, sensing 
applications in complex environments have inspired the development of multimode optical microcavity sensors. These 
multimode sensors can be used not only for multi-parameter detection but also to improve measurement precision. In this 
review, we introduce multimode sensing methods based on optical microcavities and present an overview of the multimode 
single/multi-parameter optical microcavities sensors. Expected further research activities are also put forward.
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1 Introduction

In recent years, optical sensing technologies have been 
widely applied in biomedical research, environmental 
monitoring, and national security due to their advantages 
of being label-free and resistant to electromagnetic interfer-
ence [1–3]. Various optical sensors, such as surface plas-
mon resonance, optical waveguides, photonic crystals, and 
optical microcavities, have been proven effective. Optical 
microcavities with high quality (Q) factors and small mode 
volumes (V) can greatly enhance the light-matter interaction 
[4], leading to unprecedented levels of sensitivity and low 
detection limits. Therefore, optical microcavities have been 
widely employed in various sensing applications, including 
biosensing [5–10], chemical sensing [11–13], and sensing 
of various physical quantities [14–16].

The main types of optical microcavities, Fabry–Perot 
(FP) cavities, whispering gallery mode (WGM) cavities, 
and photonic crystal (PhC) cavities have been playing cru-
cial roles in the field of sensing. For instance, FP micro-
cavities have been used for biomolecular detection [6, 17, 
18]. WGM microcavities, combined with localized surface 
plasmon resonance enhancement and other techniques, have 
achieved single-molecule or even single-ion detection lev-
els [19–21]. PhC microcavities have been applied in captur-
ing single nanoparticle and label-free molecule detection 
[22–24]. However, the aforementioned detections are limited 
to single-parameter measurements. In practical applications, 
the target parameters are often the result of multiple effects 
acting together. Conventional optical microcavity sensing 
approaches, such as monitoring the changes in individual 
resonant modes, have difficulties in fully utilizing spectral 
information. Additionally, such approaches are unable to 
achieve independent decoupling and real-time measure-
ment of multiple parameters. Therefore, there is a press-
ing demand for reliable and versatile multimode sensing 
techniques.

Sensing applications in complex environments have 
driven research on optical microcavity sensors for multi-
mode detection. Multimode sensing offers several advan-
tages over single-mode sensing. First, multimode sensors 
can be used for multi-parameter sensing. The principle 
behind multimode sensing is that different resonant modes 
in the microcavity spectrum respond differently to different 
parameters, effectively acting as multiple sensors. Therefore, 
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multimode sensing can fully utilize the sensing information 
from different modes, providing a solution for high-precision 
parallel detection of multiple parameters. For example, real-
time decoupling and independent measurement of multiple 
parameters have been achieved through sensing methods 
based on multiparameter sensing matrices [25] and self-ref-
erence [26]. Additionally, multimode sensors can be used 
for single-parameter measurement by monitoring the col-
lective behaviors of different modes, further improving the 
detection limits and enabling wide-range parameter meas-
urements. High-precision and wide-range temperature meas-
urements have been achieved using optical barcodes [27], 
while machine-learning techniques have been employed for 
accurate pressure measurements [28].

This paper provides a comprehensive review of the latest 
research advances in multimode optical microcavity sensing, 
covering both single-parameter sensing and multiparameter 
sensing. Section 2 provides discussion of commonly used 
multimode sensing methods that aim to improve detec-
tion limits and to enable wide-range and multiparameter 
sensing measurements. In Sect. 3, the applications of mul-
timode sensing in single/multi-parameter sensing are out-
lined. Finally, in Sect. 4, the challenges and future devel-
opment directions of multimode microcavity sensing are 
summarized.

2  Sensing mechanisms of multimode 
sensors based on optical microcavities

Conventional microcavity sensing schemes focus on indi-
vidual parametric sensing of a single resonant mode. Mode 
shifts (∆λ1,…, ∆λn) are used as an example to describe 
the principle of single-mode single-parameter sensing and 
multi-mode single/multi-parameter sensing. The principle of 
single-mode single-parameter sensing is shown in Fig. 1a. 
When the external temperature/pressure parameter changes, 
the sensing mode shifts, and the spectral position changes 

from  SM1 to  SM1′, resulting in a spectral offset ∆λ1, which 
is determined by the temperature/pressure change. That is, 
when the temperature is changed, ∆λ1 = ∆λT1; When the 
pressure is changed, ∆λ1 = ∆λP1. Thus, the relative tempera-
ture/pressure (∆T/∆P) parameter is sensed by detecting the 
relative displacement ∆λ1 of the resonant mode  SM1. How-
ever, a single resonant mode can only sense one parameter 
at a time, limiting its application in complex environments.

The principle of multi-mode single/multi-parameter sens-
ing is shown in Fig. 1b. Due to the different responses of 
multiple resonant modes  (SM2,…,  SMn) to the parameter, 
parametric information can be obtained from the collec-
tive behavior of multiple resonant modes. When multiple 
modes perceive a single parameter, that parameter uniquely 
determines the offset of the overall mode of the spectrum. 
For example, multiple sensing modes are shifted when the 
temperature is altered. The spectral position is changed from 
 (SM2,…,  SMn) to  (SM2′,…,  SMn′), and the corresponding 
spectral offsets (∆λ2,…, ∆λn) are temperature-induced, i.e., 
∆λ2 = ∆λT2, ∆λ3 = ∆λT3,…, ∆λn = ∆λTn. Therefore, we can 
derive this parameter from the overall pattern of the spec-
trum. When multiple modes perceive multiple parameters 
at the same time, multiple parameters jointly determine the 
shift of the overall mode of the spectrum. For example, when 
temperature and pressure are changed, each sensing mode 
in  (SM2,…,  SMn) is affected by both temperature and pres-
sure. The offsets of the sensing modes due to temperature 
and pressure are ∆λT and ∆λP, respectively, and the final 
offset of the sensing mode is the sum of the two offsets, 
∆λ = ∆λT + ∆λP. Then it is necessary to combine some data 
processing methods to decouple multiple parameters inde-
pendently. For the processing of complex multimode sensing 
signals, methods such as multiparameter sensing matrix [25] 
and machine learning [28] have been reported. The mul-
tiparameter sensing matrix utilizes the linear relationship 
between different parameters and mode offsets to achieve 
independent decoupling and parallel measurement of mul-
tiple parameters. Machine learning-based multimode optical 

Fig. 1  a Schematic diagram of single-mode single-parameter principle. The arrow indicates that the resonator mode has shifted. b Schematic 
diagram of multi-mode single/multi-parameter principle.
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microcavity sensors utilize advanced algorithms to analyze 
the multimode shift data of the sensors. This establishes the 
mapping relationship between the optical data and the opti-
cal response, to provide accurate and reliable predictions for 
single/multiparameter measurements. In addition, other fea-
tures of multimode spectra, such as resonance wavelength, 
number of resonance modes, mode spacing, and mode 
linewidth, can also be used as effective sensing information 
to train sensing models. In this section, we briefly review the 
principles of these multimode-sensing mechanisms.

2.1  Multiparameter sensing matrix

The multiparameter sensor matrix is a commonly used 
method for multiparameter sensing. Generally, each mode 
in the spectrum shows a different response to the target 
parameter. Therefore, the interaction between analytes and 
the sensor can be converted into changes in the resonant 
wavelength, enabling multiple parameter measurements. 
The multiparameter sensor matrix consists of a sensitiv-
ity matrix, a resonant wavelength shift matrix, and a rela-
tive change matrix of the target parameters to be measured, 
where the sensitivity matrix (M) must be invertible. The 
sensitivity matrix M consists of the sensitivity of different 
modes to different parameters (S11,…, Snn), and is defined 
as follows [29]:

The wavelength shifts of the modes (∆λ1,…, ∆λn) induced 
by different parameter variations (∆v1,…, ∆vn) are given by

Further, the variation of target parameters can be solved 
by the following matrix:

Equation (3) shows that, once the sensitivity and the 
wavelength change are determined, simultaneous measure-
ments of different parameters can be achieved. However, the 
multiparameter sensing matrix can only obtain the relative 
changes of the parameters and cannot determine the absolute 
values of the parameters. Besides, the prerequisite for using 
multiparameter sensor matrices is the linear correlation 
between the measured optical parameters and the resonant 
wavelength of the spectrum. In the practical environment, 
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there are more of nonlinear relationships between the vari-
ables and responses, rendering the application of multipa-
rameter sensing matrices less suitable.

2.2  Machine learning

As revealed by the current research status of optical micro-
cavity, it is worth affirming that optical microcavities have 
significant advantages in realizing multimode measurements 
in complex environments with high sensitivity, low detection 
limit, and high detection accuracy. However, mixing and 
crosstalk between different resonant modes easily occur, due 
to the narrow spacing between multiple neighboring modes 
in the microcavity transmission spectrum. This limits the 
applications of microcavities in multi-parameter measure-
ments. In addition, manually extracting relevant information 
about the target to be measured from complex spectra is both 
time-consuming and subject to human errors.

The development of a low-complexity, universal multi-
mode detection mechanism is crucial for sensors. Machine 
learning, as a powerful tool for information fusion and pat-
tern recognition, possesses strong modeling capabilities. 
Moreover, machine learning is superior to traditional meth-
ods in revealing nonlinear dependencies between data. By 
combining sensors with machine learning, the sensor spec-
trum can be fully utilized and analyzed. The mapping rela-
tionship between sensor information and the target analyte 
is established. Machine learning-based multi-mode sens-
ing enables the recognition and response to single/multiple 
parameters, as shown in Fig. 2. Using an optical microcavity 
as the sensing platform for perceiving single/multiple param-
eter variations, the multi-mode resonant spectrum changes 
accordingly with external parameter variations. Then, the 
multimode resonance spectra collected by an oscilloscope 
as data samples can be input into the model for training. It is 
important to note that before model training, data preproc-
essing is required, such as data denoising and normalization. 
Also, machine learning algorithms establish mathematical 
models based on the inputted multi-mode training data. The 
model consists of three layers: the input layer, hidden layer, 
and output layer, which are connected by weights [30]. The 
algorithm can automatically learn the mapping relationship 
between the input and the output. Typically, this process 
can be achieved using various machine learning algorithms, 
including support vector machine algorithms (SVM), deci-
sion tree algorithms (DT), random forest algorithms (RF), 
recurrent neural network algorithms (RNN), and convolu-
tional neural network algorithms (CNN). Finally, the model 
adjusts its internal parameters through multiple data inputs 
until it converges to an optimal target. Through these steps, 
spectral data can be analyzed and processed using machine 
learning to estimate change parameters from the collective 
behavior of multimode spectra, enabling single/multiple 
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parameter output. However, it is important to note that 
machine learning requires a specific quantity of spectral data 
to train the model to fully explore the mapping relationship 
between parameter variables and spectra.

3  Multimode sensing applications

The basic idea of the optical microcavity sensing mecha-
nism is that small changes in the mode field lead to signifi-
cant changes in the resonance properties such as resonant 
wavelength shift and linewidth broadening. At present, 
research on optical microcavity-based sensors has focused 
on monitoring changes in individual physical quantities 
(e.g., temperature, humidity, magnetic field, etc.) [31–34]. 
Meanwhile, the detection of single molecules or even single 
ions can be achieved using optical microcavities combined 
with techniques and mechanisms, such as local plasmon 
enhancement, laser mode-locking, optical spring effect, 
and heterodyne detection [35–42]. For example, in 2010, 
Yang et al. proposed a mode-splitting mechanism that not 
only achieved the detection of polystyrene pellet particles 
with a radius of 30 nm but also demonstrated a method for 
extracting particle size information [37]. In the same year, 
Xiao et al. theoretically achieved the detection of cylindri-
cal particles based on a mode-splitting mechanism [40]. In 
2013, the same group proposed a mode-broadening mecha-
nism to achieve the detection of single nanoparticles and 
lentiviruses with a radius of 70 nm [43]. In 2016, Baaske 
and Vollmer used plasmonic gold nanorods modified with 
a WGM microsphere cavity to detect individual zinc and 
mercury ions [20]. In 2021, Kohler et al. achieved real-time 
three-dimensional (3D) position tracking of silica nano-
sphere particles based on the shifts of three different reso-
nance modes [42].

Although optical microcavity sensors have the charac-
teristics of ultra-high sensitivity and ultra-low detection 
limit, single-mode tracking limits the detection range so 

that single-mode detection cannot fully utilize spectral 
information, resulting in poor sensing accuracy. In addi-
tion, the application of a single mode in a complex environ-
ment remains challenging, primarily due to multiple effects 
that often coexist. Traditional microcavity sensing schemes 
have difficulty in achieving real-time decoupling and inde-
pendent measurement of multiple parameters. Thus there is 
an urgent need for multimode optical microcavity sensing 
technology to address these issues. To this end, researchers 
have conducted extensive research on high-precision, wide-
range multimode single-parameter detection, and multimode 
multi-parameter parallel detection.

3.1  Multimode single‑parameter sensing 
applications

To address the issue of underutilization of spectral infor-
mation in single-mode sensing, several multimode single-
parameter sensing methods have been proposed. Generally, 
environmental interference during the sensing process can 
lead to system instability and can lower the effective detec-
tion limit [1, 44, 45]. Therefore, several effective techniques 
have been proposed to suppress environmental noise and 
further improve the detection limit. For example, self-ref-
erencing sensing methods [46, 47] have been developed. In 
optical sensors, the resonant frequency of high-quality (Q) 
resonators is typically sensitive to device temperature due 
to thermal refractive index/thermal expansion effects. Luo 
et al. proposed self-referenced temperature sensing based 
on a lithium niobate microdisk cavity, where the self-refer-
encing method selects an additional mode to eliminate the 
influence of noise [48]. The sensor selects the transverse 
magnetic (TM) mode and the transverse electric (TE) mode 
for temperature sensing. When the temperature increases, 
both modes experience a redshift, but, due to their different 
temperature responses, the displacement rates of the reso-
nant frequency differ, as shown in Fig. 3a. By mapping the 
frequency spacing between the two cavity resonance modes 

Fig. 2  Schematic diagram of sensing principle based on machine learning
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to temperature, and by utilizing the frequency shift differ-
ence between the two cavity resonances caused by tempera-
ture variations, temperature measurement is achieved [49].

However, the detection range of the self-referencing 
system is constrained by the close spacing (usually a few 
picometers) between the splitting modes. Thus, Guo et al. 
proposed an effective bio-molecular detection method using 
an external reference optical fluidic microbubble resonator, 
as shown in Fig. 3b. The stability of the tunable laser source 
as well as environmental disturbances can be monitored by 
integrating such a resonator into the detection system. The 
data from the resonator is then used to calibrate the final 
sensing data, effectively suppressing noise. This method 
has been used to achieve non-specific detection of bovine 

serum albumin molecules and specific detection of d-biotin 
molecules, both at a detection concentration of 1 fg/mL [50]. 
However, the external referencing method has high prepa-
ration requirements, and the sizes and wall thicknesses of 
the two microbubble resonators need to be as consistent as 
possible. Currently, the two commonly used optical fluidic 
cavities are microcapillaries and microbubble resonators. 
Zhao et al. proposed combining the Vernier effect with an 
optical microcavity to further improve sensitivity. By inte-
grating a square capillary with a coupled FP microcavity, 
multiple microfluidic channels can be provided, while also 
reducing the complexity of the manufacturing process [51]. 
The Vernier effect is generated by modulation of the spec-
tral envelope due to the mode coupling of two cavities with 

Fig. 3  a Temperature sensing based on self-reference. Reproduced with permission from Ref. [48]. b Biomolecular detection using optofluidic 
microbubble resonators with an external reference. DAQ, data acquisition card; PD, photodetector; FPC, polarization controller. Reproduced 
with permission from Ref. [50]. c Refractive index measurement based on Vernier effect. Reproduced with permission from Ref. [51].
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different free spectral ranges. Refractive index sensing is 
achieved by monitoring the spectral envelope displacement, 
as depicted in Fig. 3c.

In practical applications, high precision and large-
dynamic-range parameter measurements are also required. 
Traditional sensing methods rely on tracking the changes 
of a single mode and can only be achieved by tuning the 
laser scanning frequency range, with a very limited detec-
tion range. Although mode tracking can be continued by 
fine-tuning the wavelength, this comes at the expense of 
sensitivity and resolution. Furthermore, traditional sensing 
methods cannot directly obtain the actual parameter values 
from the spectrum but instead rely on the relative changes 
of the resonant modes caused by the parameter variations. 
Consequently, it is difficult to estimate the absolute value of 
a parameter solely from the spectrum without knowing its 
initial value. Recently, multiple resonant modes in WGM 
microcavities have been used to address the aforementioned 
issues.

To achieve high precision and large dynamic range detec-
tion simultaneously, Liao and Yang proposed an optical 
WGM barcode technique for temperature sensing, which 
can monitor the collective behavior of multiple modes and 
directly read the temperature from the spectrum [27]. The 
optical barcode relies on the collective behavior of multiple 

modes in the WGM spectrum, rather than the changes of 
specific modes. It can provide more information than a 
single-mode spectrum, such as accurate measurement of 
temperature. Moreover, due to the randomness of the micro-
cavity, the barcode can be random, or, more rarely, it can be 
pre-defined to encode some useful information. As shown 
in Fig. 4a, different temperatures are pre-defined as differ-
ent barcodes, serving as unique identifiers for temperature 
recognition. Then, the generated measurement barcode is 
compared with the pre-defined barcodes, and the similarity 
is calculated using the cross-correlation function and evalu-
ated using the association function, as follows:

where N is the number of items in the barcode array and m 
is the shift index. If xn and yn are similar, then the largest 
element in R is found at the shift value where the elements 
of x and y best match. Otherwise, R is a null matrix. After 
determining the best match of predefined barcodes, further 
refinement of parameter values is done using parameter sen-
sitivity and resonance wavelength shift.

Later, Dong et al. was also based on optical barcode tech-
nology, using surface nanoscale axial photonics (SNAP) 

(4)Rxy(m) =

�∑N−m−1

n=0
xn + my∗

n
, m ≥ 0,

R∗

yx(−m)
, m < 0,

Fig. 4  Optical barcodes are used for multimode sensing. a Temperature sensing. Reproduced with permission from Ref. [27]. b Molecular detec-
tion. Reproduced with permission from Ref. [53]
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microcavities for multimode displacement sensing [52]. A 
barcode was created from the resonance spectrum of the 
SNAP microcavity based on the distinctive qualities of 
each order axial mode. To quickly and precisely identify 
the microcavity displacement, the inter-correlation function 
technique was used to determine the correlation coefficient 
between the measured barcode and the predefined barcode. 
Generally, optical barcodes typically correspond to fixed 
spectral modes with a single parameter value. Therefore, 
the ability to monitor the dynamic changes of optical bar-
codes remains challenging. Zhou et al. proposed molecular 
detection of dynamic photonic barcodes based on cavity-
enhanced energy transfer [53]. As shown in Fig. 4b, the 
number of receptor molecules that continued to bind to the 
droplet surface increased as time progressed due to gradient 
diffusion. As the biomolecule bound to the interface of the 
photonic cavity, the dynamic spectrum displayed modulated 
fluorescence spectra shifting from green emission to longer 
wavelengths. This barcode provided a better method for real-
time identification and monitoring of molecular interactions.

Although a pre-defined barcode scheme can achieve high 
detection accuracy and a wide dynamic measurement range, 
this method may consume excessive data resources. The 
detection accuracy highly depends on the amount of spec-
tral data collected, and collecting a large amount of spec-
tral data are often a time-consuming process. Additionally, 
the WGM-based optical barcode ignores the differences in 
detection conditions, as the external environment is always 
prone to fluctuations. Even with small differences, the latest 
barcode often does not match the data in the pre-defined 
barcode, leading to significant measurement errors. Moreo-
ver, this method does not allow for automatic processing of 
large amounts of data during measurement. Therefore, an 
effective method is needed to extract sensing information 
from multimode resonances.

With the increasing demand for optical measurements, 
there is a need for more subtle optical features and param-
eters, and this demand leads to increasingly complex optical 
data. For example, when using spectroscopy to detect cells, 
the analysis of biological data poses challenges. Traditional 
analysis methods are mainly based on the a priori experience 
of researchers, and so they are time-consuming and prone to 
human errors. In recent years, artificial intelligence (AI) has 
made significant progress in various fields. For example, in 
the field of biomedicine, AI can be applied to medical image 
processing, disease diagnosis, precision medicine, medical 
management, and many other areas [54–57]. During this 
period, the interdisciplinary fusion of photonics and artifi-
cial intelligence has also made great progress [58–62]. The 
outstanding modeling ability and powerful data processing 
capability of AI can free researchers from tedious and repeti-
tive data processing tasks. Meanwhile, compared to a sin-
gle sensing mode, the combination of sensors and artificial 

intelligence effectively integrates multimode sensing infor-
mation. With a wider dynamic range and lower uncertainty, 
it provides an important platform for fine measurement [27]. 
For example, Lu et al. combined an artificial neural network 
model to achieve voltage detection by extracting multimode 
transmission depth, with a detection limit 6.7% lower than 
that achieved by using single-mode detection [58].

As shown in Fig. 5a, Duan et al. constructed a pressure 
detection system based on microbubble resonators. With the 
support of a fully connected multi-layer perceptron neural 
network, they achieved complete spectral feature analysis 
and improved sensitivity [28]. The results showed that the 
pressure prediction accuracy reached 99.97% by traversing 
the spectrum, with an average error as low as 0.32 kPa. Sub-
sequently, Chen et al. achieved highly accurate temperature 
measurements based on microbubble resonators supported 
by a generalized regression neural network, with a root-
mean-square error of 3.8 ×  10−3 °C, as shown in Fig. 5b 
[63]. In addition, Chen et al. theoretically demonstrated that 
multimode sensing contains more information than single-
mode tracking [63]. Dong et al. used a back-propagation 
neural network to analyze the multi-order axial modes as a 
function of the coupling position to achieve high-precision 
detection of displacement [52]. As shown in Fig. 5c, the col-
lective behavior of the multi-axial modes in the transmission 
spectrum corresponds to the variation of displacement, and 
this sensing scheme is theoretically feasible. However, the 
mapping relationship between the multiaxial displacement 
and the driving depth is complex and highly nonlinear. Dong 
introduced artificial neural networks to decode spectral data 
and fit the function relationship between the transmission 
depth of multi-axis modes and displacement, achieving 
high-precision displacement measurement. Recently, a reus-
able biochemical sensor platform in the form of randomly 
assigned arrays of unmodified glass microspheres has been 
used to image signals with radiometric WGM in a prismatic 
excitation scheme [64, 65]. Due to the multidimensional-
ity of the captured signals, interpreting external changes 
becomes more complex. To address this issue, Saetchnikov 
et al. successfully achieved refractive index detection using 
deep learning and fixed-frequency multimode resona-
tor imaging drivers. Within the unit dynamic range (0 to 
2 ×  10−3), the absolute error prediction is on the order of 
3 ×  10−6, demonstrating the prospect of deep learning-based 
external change quantification, as shown in Fig. 5d [66]. 
Later, Shah et al. proposed a particle-based biosensor and 
optical coherence tomography method for remote biochem-
ical monitoring, as shown in Fig. 5e [67]. They modeled 
stimulus-responsive polymer particles as optical cavities and 
designed a 3D analysis method to detect submicron changes 
using optical coherence tomography. As a proof of concept, 
they demonstrated 3D spatiotemporal tracking of glucose-
responsive particles in tissue-mimicking phantoms, which 
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responded to dynamically fluctuating glucose levels. By 
employing 3D convolutional neural networks, deep learn-
ing was further implemented. Automatic processing of con-
tinuous 3D time series data streams formed a powerful end-
to-end pipeline with great potential for continuous in vivo 
biochemical monitoring.

3.2  Multimode multiparameter sensing 
applications

In response to the difficulty of multiparameter sensing by 
a single mode in a complex environment, multimode spec-
troscopy methods are adopted to achieve parallel detection 
of multiple parameters. Currently, multi-parameter sensing 
based on optical microcavities often relies on sensor arrays 
[68–71], which consist of several individual sensors for 
measuring different parameters. In many cases, each optical 
microcavity is designed to measure specific parameters and 
requires the surface of the optical microcavity to be modified 
with sensitive materials. Thereafter, appropriate signal pro-
cessing methods are used to decouple the different param-
eters, with the most commonly used information processing 
method being the multi-parameter sensing matrix.

Kavungal et al. achieved the decoupling of stress and 
temperature based on a cascaded micro-cylinder cavity 
sensing platform with a two-parameter sensing matrix [72]. 
Meanwhile, they cascaded three micro-cylinder cavities on 
a single fiber cone for the additive validation of the spectra, 
as shown in Fig. 6a. The results show that the cascaded spec-
tra are roughly equal to the superposition of each spectrum 
so that each optical microcavity can perform independent 
parameter measurements. Similarly, Mallik et al. success-
fully achieved a two-parameter measurement and decou-
pling of ammonia vapor concentration and humidity in air 
by using two cascaded microsphere cavities [73]. The device 
consisted of two WGM microsphere resonators that had been 
coated with various polymer layers, as shown in Fig. 6b. 
Due to the exposure of both ammonia and water molecules 
to the surrounding atmosphere, the optical properties of the 
coatings changed, resulting in a spectral shift of the WGM 
resonance. The  NH3 concentration and relative humidity in 
the air could be estimated concurrently by monitoring the 
spectral shift of the related WGMs. However, array sensors 
cannot independently resolve each parameter without sig-
nificant cross-talk, which poses limitations and bottlenecks 
to their application development. Driven by this, there is a 
great demand for sensors that can accurately detect different 

Fig. 5  Machine learning for multimode sensing. a Pressure sensing. Reproduced with permission from Ref. [28]. b Temperature sensing. Repro-
duced with permission from Ref. [61]. c Displacement sensing. Reproduced with permission from Ref. [52]. d Refractive index sensing. Repro-
duced with permission from Ref. [66]. e Microparticle-based biochemical sensing. Reproduced with permission from Ref. [67]
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parameters. Therefore, Zhang et al. proposed the design of 
a parallel FP interferometer generated in a seven-core opti-
cal fiber that can achieve discriminative measurements of 
temperature and strain, as shown in  Fig. 6e [74]. According 
to experimental findings, the relative temperature measure-
ment error and relative dye measurement error of the parallel 
FP interferometer are less than 0.5% and 2.5%, respectively. 
In addition, Ma et al. designed and experimentally dem-
onstrated a compound FP interferometer for high-pressure 
and high-temperature sensing based on silica capillaries and 
optical fibers made from sapphire, as shown in Fig. 6c [75]. 
The measured gas pressure range was 0 − 4 MPa and the 
temperature range was 20–700 °C. Ye et al. innovatively 
proposed a two-parameter sensor that simultaneously detects 
relative humidity and temperature, and considers the effect 
of temperature on humidity. Through three-dimensional 
time-domain finite-difference simulations, they demon-
strated the feasibility of simultaneous sensing by focusing 

on a single output transmission spectrum and using a sen-
sor matrix, as shown in Fig. 6d [76]. The maximum rela-
tive humidity and temperature detection errors caused by 
a 1 pm deviation of the resonant wavelength were only 
0.006% RH and 0.026 K. Thereafter, Wang et al. used a 
cascaded photonic crystal micro-ring resonator to achieve 
simultaneous humidity and temperature measurements on 
a chip, as shown in Fig. 6f [77]. The abundance of data in 
the multiple resonant modes further enhanced the ability of 
measurement errors to cancel each other out, thus improv-
ing the sensing performance reflected by the coefficient of 
determination(R2-value), calculated to be 0.97 and 0.99 for 
RH and temperature sensing results, respectively.

Although sensing arrays have achieved multiparam-
eter sensing using wavelength division multiplexing, their 
complex array structure and detection cost hinder their 
further development in the case of larger numbers of tar-
get parameters. Thus, Duan et al. achieved dual-parameter 

Fig. 6  Multiparameter sensing matrices are used for multimode sensing. a Stress and temperature sensing based on cascaded micro-cylindrical 
cavities.  Reproduced with permission from Ref. [72]. b Ammonia vapor concentration and humidity detection based on cascaded microsphere 
cavities. Reproduced with permission from Ref. [73]. c Compound FP interferometer for measuring high temperatures and pressures simultane-
ously. Reproduced with permission from Ref. [75]. d Temperature and relative humidity can be detected simultaneously using a silicon on-chip 
with cascading photonic crystal nanobeam cavities. Reproduced with permission from Ref. [76]. e Parallel FP interferometers fabricated on mul-
ticore fiber for temperature and strain discriminative sensing. Reproduced with permission from Ref. [74]. f On-chip simultaneous monitoring of 
temperature and humidity utilizing error-corrected cascaded photonic crystal microring resonators. Reproduced with permission from Ref. [77]
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measurements of temperature and refractive index by using 
a single microbubble resonator sensing platform with a self-
referencing sensing mechanism, as shown in Fig. 7a [26]. 
They monitored the leap kinetics of a typical phase change 
material poly-n-isopropylacrylamide (PNIPA) using high-Q 
optical flow microcavity experiments. The integrated micro-
fluidic channels provided effective coupling between the 
PNIPA molecules and the resonant optical field for operando 
detection. Usually, modes of different orders have different 
field distributions. Duan et al. picked a radial third-order 
mode as the sensing mode and the fundamental mode as 
the reference mode, and the two modes showed different 
responses during the phase transition. They used a dual-
mode self-reference technique to extract the temperature 
and refractive index changes of PNIPA from the microcav-
ity resonance spectra during the phase transition. This gave 
them a fantastic opportunity for on-demand investigation 
of dynamic biological processes. However, the above work 
required a rigorous selection of modes for multiparameter 
sensing. Later, Wu et al. in the same group also used mul-
tiple modes of a single microbubble resonator to achieve 
independent measurement and real-time decoupling of tem-
perature and pressure, as shown in Fig. 7b [25]. This work 
did not require a strict mode selection, but only a certain 
interval between modes, which could be more easily selected 

for two modes and combined with a two-parameter sensing 
matrix to achieve two-parameter sensing. Optical microcavi-
ties provided powerful tools for the development of fast and 
accurate physical quantity sensing techniques. The inherent 
inertness of such primitive microresonators, however, pre-
vented their widespread use in new applications, including 
gas detection. In this case, chemical functionalization can 
enhance the capabilities of sensing applications [78]. There-
fore, Yao’s group implemented two-dimensional-material 
functionalized microcomb sensors by asymmetrically depos-
iting graphene in over-modal microspheres [79]. Spectral 
capture of Stokes solitons belonging to different transverse 
mode families could be co-produced in a single device using 
a single pump. These Stokes solitons with locked repeti-
tion rates but distinct offsets could create ultrasensitive taps 
in the electric domain and have unique benefits for selec-
tivity and individual gas molecule detection. Finally, they 
achieved detection of three gases by a third-order sensing 
matrix. Later, the group deposited graphene on erbium-
doped over-modal microspheres to realize functionalized 
microlaser sensors [80]. Multiple laser lines are excited in 
various mode families of a single micro-resonator using 980 
nm pumping. Interference between these splitting mode 
lasers due to graphene-induced intracavity backscattering 
produces beat notes in the electrical domain (0.2–1.1 MHz) 

Fig. 7  a Simultaneous detection of temperature and refractive index. Reproduced with permission from Ref. [26]. b Temperature and pressure 
detection based on a single microbubble cavity. Reproduced with permission from Ref. [25]. c Machine learning-based multi-parameter sensing 
in a multimode self-interference micro-ring resonator. Reproduced with permission from Ref. [86]. d Unsupervised gas classification by multi-
mode micro-resonator. Reproduced with permission from Ref. [87]
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with sub-kHz accuracy. Finally, the identification of the four 
gases is achieved by a fourth-order sensing matrix.

Most of the above work is based on the sensing method 
of the multiparameter sensing matrix, which is no longer 
applicable when there is a nonlinear relationship between 
the sensing parameters and the sensing modes. Therefore, a 
more general data processing method is needed. The pow-
erful nonlinear modeling capability of machine learning 
allows for multidimensional data processing and analysis 
of spectra [81–85]. Recently, Hu et al. proposed a self-
interfering micro-ring resonator multimode sensing method 
that uses artificial neural networks to process the signal for 
the identification of two gases, as shown in Fig. 7c [86]. 
The self-interfering micro-ring resonator (SIMRR) allows 
multimode sensing over a wide wavelength range but is 
not affected by frequency noise. For parameter estimation, 
transmission depths of various resonant modes can be gath-
ered using a tunable probe laser excitation detection device. 
The training and test phases of a back propagation neural 
network are utilized for signal processing. The training and 
test data are created from these transmission depths over a 
range of wavelengths. Two gas sensors were numerically 
validated using SIMRR multimode sensing as an exam-
ple. However, backpropagation neural networks, forming a 
supervised learning algorithm, require large training data 
sets, and labeled data are often difficult to obtain in practical 
applications. Thus, unsupervised algorithms are a form of 
learning used without any training data or guidance, elimi-
nating the need for creating large amounts of labeled data. 
It is also capable of discovering new patterns in the training 
data set, some of which can even go beyond prior knowl-
edge and scientific intuition. Thus, Zhang et al. developed 
another high-precision unsupervised classification model 
in multimode SIMRR to achieve the identification of three 
gases, as shown in Fig. 7d [87]. The developed sensor was 
used to numerically validate the unsupervised classification 
algorithm. The numerical findings demonstrate that for the 
specified three-gas sensor with a signal-to-noise ratio larger 
than 60 dB, the classification model has extremely high clas-
sification accuracy.

4  Conclusion and outlook

This paper presents the basic characteristics and sens-
ing mechanisms of multimode sensing based on optical 
microcavities, briefly introducing multimode sensing 
methods such as multiparameter matrices and machine 
learning. The paper also presents the applications of 
multimode microcavity sensing in different fields. The 
current research on multimode single-parameter focuses 
on improving detection limits and achieving wide-range 
sensing measurements, such as in noise suppression using 

self-referencing techniques, and in application of optical 
barcodes for achieving high accuracy and wide-range 
sensing measurements. The research on multimode multi-
parameter sensing focuses on techniques, such as multi-
parameter parallel detection and independent decoupling 
based on sensor matrix, and intelligent multi-parameter 
sensing based on machine learning.

In recent years, intelligent optical multimode sensors have 
made significant progress due to interdisciplinary collabo-
ration, aiding researchers in overcoming the complex data 
bottleneck in multimode sensors. By leveraging machine 
learning algorithms, the fusion of multimode sensing infor-
mation can be effectively achieved, further enhancing sens-
ing resolution and sensitivity. Currently, it is widely recog-
nized that ensuring accurate prediction models in machine 
learning algorithms requires a large amount of high-quality 
data. However, due to the limitations imposed by many 
real-world conditions, it is often challenging to obtain suf-
ficient data. One effective approach is to use machine learn-
ing algorithms to generate synthetic data using techniques 
like generative adversarial networks (GANs) to supplement 
training data. In addition, in future work, it is expected that 
a general-purpose sensing model can be realized by optimiz-
ing the model. When the sensing model is applied to differ-
ent sensing platforms, there is no need to retrain the model, 
which lays the foundation for the development of multimode 
intelligent sensing.

Meanwhile, there are still other sensing methods being 
studied in multimode sensing. For example, the recently 
widely discussed optical frequency comb consists of a series 
of equidistant and highly stable frequency lines. As the basis 
of the most accurate frequency standard in the world, opti-
cal frequency combs have been widely used in precision 
measurement fields, such as fundamental physical constant 
measurement, optical atomic clocks, and molecular spectros-
copy. Undoubtedly, optical frequency combs provide new 
opportunities for single/multi-parameter measurement. In 
the future, we can expect the integration of sensors with dif-
ferent sensing methods, to achieve more reliable multimode 
sensing for sensing applications in complex environments.
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