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A B S T R A C T

Whispering gallery mode (WGM) microcavities are excellent platforms for ultra-sensitive sensing due to high-
quality factor and small mode volume. However, the conventional sensing method by tracking single-mode
changes is difficult to fully utilize the sensing information, which limits the measurement precision and
dynamical range. Here, we demonstrate a high-precision temperature sensor based on the multimode sensing
method in a packaged microbubble resonator (PMBR). Remarkably, a low-cost broadband spectrum source is
used as probe light to provide more sensing modes for high-precision measurement. Empowered by a machine
learning method, the multimode spectral information are fully utilized, and the true temperature is precisely
readout with mean-squared error (MSE) of 0.0138. The detection limit is lower three times than single-mode
sensing method, capable of reaching 0.117 ◦C. In addition, the correlation coefficient (𝑅2) between predictions
and truth is as high as 0.9996 within the measurement range of 25–45 ◦C. With the low-cost laser source and
high detection precision, this work provides a new perspective for intelligent optical microcavity sensors and
their engineering applications.
Introduction

Whispering gallery mode (WGM) microcavities [1–3] with enhanced
light-matter interaction have attracted extensive research interest in ul-
trasensitive sensors, low-threshold lasers, quantum optical devices, and
optical frequency combs [4–8]. Particularly, in highly sensitive optical
sensing, WGM microcavities have reached the level of single-molecule
and single-ion detection by combining surface plasmon, optical spring
effect, photoelectric heterodyne and laser mode-locking [9]. With high
sensitivity and fast response, they are also widely used in the mea-
surement of physical parameters, such as temperature, pressure, and
magnetic field [10–12]. All of the above WGM sensors are implemented
by tracking single mode changes, such as mode shifts, splitting and
linewidth broadening [4,13,14]. However, this conventional single-
mode tracking method ignores and wastes the sensing information
from other resonances, constraining the detection precision. On the
other hand, the dynamic measurement range is limited by the laser
source, which is mainly because the single-mode method usually does
not work when the tracking mode removes out the laser scanning
range. Although the dynamic measurement range can be improved by
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increasing the laser sweep range, which results in a degradation of the
resolution due to the limited number of data points per spectrum. In
addition, the single-mode WGM sensors measure the relative changes,
and thus the actual value is difficult to readout directly without baseline
and calibration.

Fortunately, there are multiple modes in WGM microcavity, ex-
hibiting different responses to the target parameters. Therefore, the
measurement uncertainty can be effectively reduced by fusing the
sensing information carried by these resonant modes [15–17]. So far,
several works have been reported for high-precision detection based
on the multimode sensing method [18–22]. For example, Liao et al.
demonstrate an optical WGM barcode sensing method based on mul-
tiple resonant modes, achieving the direct readout of actual temper-
ature [19]. In the specific implementation, the WGM spectrums at
different temperatures are transformed as barcodes to establish the
database. Subsequently, the most similar barcode is retrieved by com-
paring the barcode from a particular measurement with the standard
barcode in the databases. Finally, the actual temperature is deter-
mined based on the collective shift between the two barcodes. The
detection accuracy of this method relies on the database size, and
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Fig. 1. (a) Experimental setup for temperature sensing bases on broadband laser source. OSA: optical spectrum analyzer, TEC: thermoelectric cooler, FPC: fiber polarization
controller, PMBR: packaged microbubble resonator. (b) Microscope image of PMBR with a diameter of about 80 μm. (c) Physical image of the PMBR. (d) Transmission spectra of
PMBR near 1553 nm. The Q-factor of 1.55 × 104 is obtained via Lorentzian fitting. (e) Long-term stability of wavelength shift (black) and transmission (red) of PMBR. Inset: Allan
variance of wavelength shift (left) and transmittance (right).
the collection of major databases is time- and resource-consuming.
Moreover, the multimode sensing methods have been widely used in
multiple parameters sensing, such as the simultaneous measurement of
temperature and stress, concentration and humidity, temperature and
pressure, and mixed gas [20,23–25]. In the multi-parameter sensing,
sensing matrix is a commonly used method for data process, which
is only applicable when the sensing mode and target parameter are
in a linear relationship. Therefore, there is a need to find a general,
time- and effort-saving data processing method for multimode sensing
methods. Machine learning with powerful data-processing capacity and
nonlinear modeling capability is considered an alternative approach
to extract sensing information from multi-mode spectra [26,27]. It
has been widely used in optical sensing signal process, exhibiting a
higher performance compared with other sensing schemes [28–31].
For example, machine learning have been used in tumour diagnosis
and classification based on Raman spectroscopy and Raman imaging,
effectively improving the accuracy of diagnosis [29]. Recently, several
machine learning algorithms such as Generalized Regression Neural
Network (GRNN), Multi-Layer Perceptron (MLP), and Artificial Neu-
ral Network (ANN), have been employed in the multimode sensing
methods based on optical microcavity, enabling the high precision
measurement of temperature, and pressure, as well as identification of
concentration and species of solution mixtures [15,32,33]. However,
the multimode sensing method based on machine learning usually re-
quires a wide sweep frequency range to increase the number of sensing
modes to achieve high detection precision [34]. These tunable lasers
are expensive and bulky, commonly requiring an optical bench and a
separate laser controller, making WGM microcavity sensors difficult to
take out of the lab and impeding the practicability and engineering.
2

In this work, based on a low-cost broadband laser source, we
demonstrate a machine learning-assisted high-precision temperature
sensor in a packaged microbubble resonator (PMBR). By fusing these
sensing modes using machine learning, smaller detection uncertainty
can be achieved. Here, a three layer perceptron neural network is
employed to retrieve the actual temperature. When the temperature
changes from 25 ◦C to 45 ◦C in the step of 0.5 ◦C, the correspond-
ing transmission spectra are experimentally captured as a dataset to
train and test the network model. The true temperatures are precisely
readout with a mean-squared error (MSE) of 0.0138 within the mea-
surement range of 25–45 ◦C. and the correlation coefficient (R2) of
0.9996 is realized. The detection limit of 0.117 ◦C is achieved, which
is a quarter of the single-mode sensing method. This work exhibits
the potential of the low-cost broadband laser source in multimode
microcavity sensors. Meanwhile, the cross-application with machine
learning further improves the detection precision, laying the foundation
for optical intelligent sensors and their engineering applications.

Fabrication and characterization

The experimental setup is illustrated in Fig. 1(a). An oblate geome-
try microbubble resonator (MBR) is chosen due to the dense spectrum,
which is more suitable for the multimode sensing method. MBR is fabri-
cated using silica capillaries via the thermal expansion method [35,36].
The whole fabrication process involves three steps. Firstly, the capillary
is heated with a hydrogen flame and stretched to a tapered waist
diameter of about 30 μm. Subsequently, one end of the capillary is
sealed with ultraviolet (UV) glue, and another is connected to a syringe
for pressurization. Finally, the two counter-propagating beams from a
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Fig. 2. (a) Experimentally measured transmission spectra of the microcavity under the excitation of a broad-spectrum laser source at 26 ◦C. (b) Tracking detection using the
resonant modes shown by the arrows when the temperature was increased from 25.5 to 30.5 ◦C. (c) Mode shift versus temperature change.
Fig. 3. The transmission spectra are collected to build a database (a), and then converted into a matrix (b), where m is the number of samples and n is the number of data points
of the samples. (c) Schematic diagram of the MLP neural network.
CO2 laser heat the pressurized area, and the capillary gradually expands
into a bubble, as shown in Fig. 1(b). In the measurement experiment, a
low-cost broadband amplified spontaneous emission (ASE) laser source
is used as probe light to excite WGMs of the PMBR through taper fiber.
Notably, the broadband laser source with a wide range spectral band
(1528–1565 nm) can excite major resonant modes, providing abundant
sensing information for high-precision measurement. In addition, the
broadband laser source is low-cost, and do not require special optical
bench, offering an opportunity to take WGM sensors out of the lab
for engineering applications. A fiber polarization controller is used to
achieve the optimal coupling efficiency by tuning the polarization state
of the input light. In order to facilitate heating, the MBR and tapered
fiber coupling system is packaged on a slide by using low-refractive-
index polymer (MY-133, MY Polymers Ltd), which also enhances the
coupling stability and avoids the interference of environmental contam-
inants, as displayed in Fig. 1(c). In addition, a polyimide electrothermal
film is applied to heat PMBR, whose temperature is regulated via a
computer-controlled thermoelectric cooler. Meanwhile, a thermistor is
used to in-lined monitor and calibrate the temperature. The optical
spectrum analyzer with the accuracy of 0.02 nm and sampling interval
of 0.005 nm is employed to monitor and collect transmission spectra at
different temperatures to provide the raw data for subsequent machine
learning.

The typical quality (Q)-factor of PMBR is about 1.55 × 104 via
Lorentzian fitting of the transmission spectrum, as displayed in Fig. 1(d).
Remarkably, the multimode sensing method can still exhibit good sens-
ing performance despite the low Q-factor. And the cross-application
with machine learning can further achieve high detection accuracy.
Furthermore, the long-term stability of wavelength shift and transmit-
tance is demonstrated in Fig. 1(e). The drift deviations for wavelength
and transmittance are 0.303 and 9.393 × 10−4, respectively. The inset
of Fig. 1(e) illustrates the calculated Allan variance, reflecting the
3

noise level of the measurement system. It is observed that the Allan
variance of wavelength shift reaches the least value at around 8 s,
and the stabilization time of the wavelength is significantly affected
by thermal effects, as shown in the left of the inset of Fig. 1(e). In
addition, the Allan variance of the transmittance decreases by orders of
magnitude and remains clearly visible for up to 32 s, as shown in the
right of the inset of Fig. 1(e). Fig, 2(a) shows the typical transmission
spectrum when the temperature is 26 ◦C, exhibiting the dense spectral
characteristics of PMBR. Fig. 2(b) exhibits the evolution of the typical
transmission spectrum with the resonant wavelength near 1553.6 nm
as the temperature increases from 25.5 ◦C to 30.5 ◦C in steps of 0.5 ◦C.
It is obvious that the resonance wavelength gradually blueshifts with
increasing temperature, which is mainly attributed to the negative
thermo-optic response of the polymer. The measurement temperature
sensitivity of 21.6 pm/◦C is obtained by linearly fitting the resonant
wavelength changes, as shown in Fig. 2(c). Applying one-tenth of the
linewidth (11 pm) is the uncertainty of the measurement system [32],
and the detection limit of the single-mode sensing method is 0.509 ◦C.

Machine learning-assisted multimode sensing

A three-layer perceptron neural network is employed for the mul-
timode sensing information fusion, while the transmission spectra are
collected to establish database for training and testing the model, as
shown in Fig. 3(a). Here, the training and testing spectrum in database
are random arranged. Firstly, each input spectrum in Fig. 3(a) is
normalized, and then converted into a matrix with one row and n
columns, thus a matrix of m rows and n columns is formed when m
spectra are input, as shown in Fig. 3(b). Next, the training and testing
datasets with corresponding temperature labels are input into the fully
connected three-layer perceptron neural network to estimate the target
temperature and verify overall performance, as displayed in Fig. 3(c).



Results in Physics 62 (2024) 107806R. Song et al.
Fig. 4. MSE versus (a) learning rate, (b) neurons’ number in hidden layer, (c) epochs, (d) dataset size, (e) wavelength range, and (f) temperature range.
When the transmission spectra are fed into the network, the input layer
receives the complete raw data and transfers it to the hidden layer, and
then passes it to the output layer to output predict temperature.

𝑦 =
𝑘
∑

𝑖=1
𝑤𝑖𝐹

(

𝑤0 +
𝑛
∑

𝑗=1
𝑥𝑖𝑤𝑖𝑗

)

(1)

where 𝑤𝑖 is the weight factor of the input layer of the link, F () is the
nonlinear activation function, 𝑤0 is the bias, 𝑥𝑖 is the input data and
𝑤𝑖,𝑗 is the weight factor of the output layer of the link.

Experimentally, the raw spectral data are collected when the tem-
perature changes from 25 ◦C to 45 ◦C with the step of 0.5 ◦C. There
are 80 groups of transmission at each temperature for training the
neural network while 20 groups of transmission spectra are collected
for blinding test, resulting in a total of 3280 training samples and 820
testing samples to form a database, as shown in Fig. 3(a). Here, each
spectrum in the dataset is labeled with the corresponding temperature.
Remarkably, the good stability of the measurement system allows the
network model to achieve high accuracy predictions even with small
samples. Subsequently, the neural network is trained using the back-
propagation algorithm, which is based on the gradient descent method
to adjust the weights [37]. After completing the training process, the
nonlinear mapping relationship between the transmission spectrum and
the corresponding temperature is established in the MLP neural net-
work. Finally, the transmission spectrum of testing datasets is inputted
into the trained MLP neural network, then the target temperature will
be directly readout. The nonlinear activation function is set as Rectified
Linear Unit (ReLU). The prediction of each temperature takes only 3 ms
on the CPU of the AMD Ryzen 3750H 2.30 GHz, enabling the in-situ
real-time monitoring of the PMBR-based temperature sensor. The loss
function is defined as MSE to evaluate the performance of the neural
network model, which can be expressed as:

𝑀𝑆𝐸 = 1
𝐾

𝐾
∑

𝑖=1
(𝑇𝑘 − �̂�𝑘)2 (2)

where 𝑇𝑘 is the true value of temperature and �̂�𝑘 is the predicted value
of temperature.

In order to optimize the training hyper-parameters, we investigate
the relationship between the learning rate and neurons’ number of
hidden layers and the MSE, as shown in Fig. 4(a)–(b). The MSE is
minimized when the learning rate is set to 0.0005 and the number
of neurons in the hidden layer is set to 50. Fig. 4(c) shows the effect
of epoch on MSE, indicating that MSE gradually decreases as epoch
4

increases and reaches the lowest value at 2000 epochs. Therefore, the
hyper-parameters with optimal performance (i.e. the lowest MSE) come
from the combination of a learning rate of 0.0005, 50 neurons of the
hidden layer, and 2000 epochs. In addition to the neural network
parameters, the amount of data used also affects the measurement
results. Fig. 4(d) interrogates the effects of the total amount of data on
MSE for each temperature. The larger data volume tends to result in
a smaller MSE, while also reducing the impact of data randomness. In
addition, to evaluate the performance of multimode sensing methods,
we investigate the influences of wavelength range on MSE, as shown
in Fig. 4(e). It is observed that the larger wavelength range means the
lower MSE and the MSE reaches the best results when the wavelength
range is 37.5 nm. This is mainly because this range contains the
complete spectral data and provides the maximum amount of sensing
information. Fig. 4(f) demonstrates the effect of temperature range on
MSE. The temperature range starts at 25 ◦C and the step size is 0.5 ◦C.
All of the MSEs are less than 0.02, indicating that this method has good
generalization in terms of measurement range.

Furthermore, the predicted temperature for all testing datasets
against the actual temperature is interrogated. The coefficient of de-
termination (𝑅2 = 1−

∑

(𝑇 −𝑇 )2∕(𝑇 −𝑇 )2) is introduced to characterize
the temperature retrieval performance of the models, where 𝑇 is the
standard actual value, 𝑇 is the predicted value, 𝑇 is the mean of
actual value. Fig. 5(a) displays that the predicted temperature exhibits
a good linear relationship with the actual temperature. The prediction
capability of temperature has reached a high value of 𝑅2 = 0.9996. It is
observed that each prediction point falls near the true value, and even
the temperature at both ends can be accurately predicted. In addition,
the prediction error distribution is plotted in Fig. 5(b). Over 90% of
the predicted temperature errors are less than 0.20 ◦C and 97.4% of
the predicted temperature errors are less than 0.25 ◦C, which verifies
the high accuracy of the measuring temperature method proposed in
this paper. Finally, by comparing the predicted temperature with the
actual temperature, it is concluded that the MSE is 0.0138, and the
lower limit of detection (LOD) is 0.117 ◦C (approximated as the root
mean square error, RMSE), which is three times lower than single-mode
sensing methods, suggesting the excellent performance of multimode
sensing method. As displayed in Fig. 4, the LOD can be improved
by increasing the data size, neurons of hidden layer, and wavelength
range. In addition, by introducing the physical mechanism to provide
prior physical information for machine learning model, the reliability
and interpretability of the model can be further enhanced, and thus
improving the LOD.
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Fig. 5. (a) Comparison of predicted and true values of temperature. (b) Histogram of the error distribution of (a).
Conclusion

In summary, based on a low-cost broadband laser source, we re-
ported a machine learning-assisted high-precision WGM temperature
sensors by combining multimode sensing method. The raw data is
consisted of a large number of multimode spectra and corresponding
temperatures, which are analyzed and predicted using a MLP neural
network. The actual temperatures are precisely measured with MSE
of 0.0138. By fitting the predictions and standard temperature, the
coefficient of determination 𝑅2 of 0.9996 is achieved, demonstrat-
ing the excellent performance of MLP on temperature retrieval. The
proposed multimode mode sensing method realizes a lower detection
limit of 0.117 ◦C, which is lower three times than single-mode sensing
methods. This work exhibits the potential for high-precision intelligent
temperature sensors based on WGM microcavity, while providing a new
thought for the practicability of optical microcavity sensors.
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